On the capture of two evaders in a simple pursuit-evasion problem with phase restrictions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A differential game of the group of persecutors and two evaders is considered at equal dynamic opportunities of all participants and under equal phase restrictions imposed on the states of evaders. Sufficient solvability conditions are derived proceeding on the assumption that the evaders use the same control.
Keywords: differential game, phase restrictions, piece-program strategy, counterstrategy.
@article{VUU_2011_4_a0,
     author = {M. N. Vinogradova},
     title = {On the capture of two evaders in a~simple pursuit-evasion problem with phase restrictions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--8},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_4_a0/}
}
TY  - JOUR
AU  - M. N. Vinogradova
TI  - On the capture of two evaders in a simple pursuit-evasion problem with phase restrictions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 3
EP  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_4_a0/
LA  - ru
ID  - VUU_2011_4_a0
ER  - 
%0 Journal Article
%A M. N. Vinogradova
%T On the capture of two evaders in a simple pursuit-evasion problem with phase restrictions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 3-8
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2011_4_a0/
%G ru
%F VUU_2011_4_a0
M. N. Vinogradova. On the capture of two evaders in a simple pursuit-evasion problem with phase restrictions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2011), pp. 3-8. http://geodesic.mathdoc.fr/item/VUU_2011_4_a0/

[1] Pshenichnyi B. N., “Prostoe presledovanie neskolkimi ob'ektami”, Kibernetika, 1976, no. 3, 145–146

[2] Chernousko F. L., “Odna zadacha ukloneniya ot mnogikh presledovatelei”, Prikladnaya matematika i mekhanika, 40:1 (1976), 14–24 | Zbl

[3] Petrov N. N., Prostoe presledovanie pri nalichii fazovykh ogranichenii, Dep. v VINITI 27.03.84, No 1684-84, L., 1984, 16 pp.

[4] Rikhsiev B. B., Differentsialnye igry s prostymi dvizheniyami, Fan, Tashkent, 1989, 187 pp. | MR | Zbl

[5] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo Leningr. un-ta, L., 1977, 222 pp. | MR | Zbl

[6] Chikrii A. A., Konfliktno-upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 380 pp.

[7] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 197 pp.

[8] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurtskogo universiteta, Izhevsk, 2009, 266 pp. | MR | Zbl

[9] Petrov N. N., Petrov N. Nikandr., “O differentsialnoi igre ‘kazaki-razboiniki’ ”, Differentsialnye uravneniya, 19:8 (1983), 1366–1374 | MR | Zbl

[10] Petrov N. N., Prokopenko V. A., “Ob odnoi zadache presledovaniya gruppy ubegayuschikh”, Differentsialnye uravneniya, 23:4 (1987), 724–726 | MR

[11] Chikrii A. A., Prokopovich P. V., “Lineinaya zadacha ubeganiya pri vzaimodeistvii grupp ob'ektov”, Prikladnaya matematika i mekhanika, 58:4 (1994), 12–21 | MR

[12] Chikrii A. A., Prokopovich P. V., “O zadache ubeganiya pri vzaimodeistvii grupp dvizhuschikhsya ob'ektov”, Kibernetika, 1989, no. 5, 59–63 | MR

[13] Satimov N., Mamatov M. Sh., “O zadache presledovaniya i ukloneniya ot vstrechi v differentsialnykh igrakh mezhdu gruppami presledovatelei i ubegayuschikh”, DAN Uzb. SSR, 1983, no. 4, 3–6 | MR | Zbl

[14] Vagin D. A., Petrov N. N., “Ob odnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Prikladnaya matematika i mekhanika, 2002, no. 2, 232–241

[15] Grigorenko N. L., “Presledovanie neskolkimi upravlyaemymi ob'ektami dvukh ubegayuschikh”, DAN SSSR, 282:5 (1985), 1051–1054 | MR | Zbl

[16] Bannikov A. S., “O zadache pozitsionnoi poimki odnogo ubegayuschego gruppoi presledovatelei”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 3–7 | Zbl

[17] Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Matematicheskaya teoriya igr i ee prilozheniya, 2:4 (2010), 74–83 | Zbl

[18] Bannikov A. S., Petrov N. N., “K nestatsionarnoi zadache gruppovogo presledovaniya s fazovymi ogranicheniyami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 40–51

[19] Petrov N. N., “Ob upravlyaemosti avtonomnykh sistem”, Differentsialnye uravneniya, 4:4 (1968), 606–617 | MR | Zbl