Continuous maps between finite powers of Sorgenfrey line
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2011), pp. 85-94
Cet article a éte moissonné depuis la source Math-Net.Ru
The Sorgenfrey line is the real line with topology whose base consists of all left half-open intervals. It is shown that for integers $m>1$ there is no continuous closed map of $m$th power of the Sorgenfrey line onto Sorgenfrey line, and that for integers $n>2$ there is no continuous quotient map of the square of the Sorgenfrey line onto the $n$th power of the Sorgenfrey line.
Keywords:
Sorgenfrey line, finite powers of Sorgenfrey line, continuous map, closed map
Mots-clés : quotient map.
Mots-clés : quotient map.
@article{VUU_2011_3_a7,
author = {M. A. Patrakeev},
title = {Continuous maps between finite powers of {Sorgenfrey} line},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {85--94},
year = {2011},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2011_3_a7/}
}
M. A. Patrakeev. Continuous maps between finite powers of Sorgenfrey line. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2011), pp. 85-94. http://geodesic.mathdoc.fr/item/VUU_2011_3_a7/
[1] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR
[2] Burke D. K., Lutzer D. J., “On powers of certain lines”, Topology and its applications, 26 (1987), 251–261 | DOI | MR | Zbl
[3] Patrakeev M. A., “Continuous bijections of finite powers of the Sorgenfrey line”, Proc. Steklov Inst. Math., 2004, S18–S25 | MR | Zbl
[4] Burke D. K., Moore J. T., “Subspaces of the Sorgenfrey line”, Topology and its applications, 90 (1998), 57–68 | DOI | MR | Zbl
[5] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974, 423 pp. | MR