On an adequate description of adjoint operator
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2011), pp. 43-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study multipoint boundary value problems for quasidifferential equations, under certain (broad) assumptions on the coefficients of the equation so that there exists the formally adjoint (in the sense of Lagrange) quasidifferential equation. The operator corresponding to the original boundary value problem is densely defined in a reflexive Banachian space and has closed image in its adjoint; the operator corresponding to the adjoint problem has exactly the same properties. We note that the adjoint boundary value problem is not classical: its solution satisfies the quasidifferential equation only in the open intervals between points in which boundary conditions are specified. These considerations lead us to the notion of the generalized boundary value problem. In particular, we introduce the notion of the generalized Valle-Pousin problem (GVPP), where the number of boundary conditions may exceed the order of the equation by allowing higher quasiderivatives of the solution to be discontinuous at the interior points in which boundary conditions are specified. We also show that the boundary value problem adjoint to GVPP is itself a GVPP.
Keywords: Green formula, formula of boundary forms, adjoint operator, adjoint boundary value problem.
@article{VUU_2011_3_a4,
     author = {V. Ya. Derr},
     title = {On an adequate description of adjoint operator},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {43--63},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_3_a4/}
}
TY  - JOUR
AU  - V. Ya. Derr
TI  - On an adequate description of adjoint operator
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 43
EP  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_3_a4/
LA  - ru
ID  - VUU_2011_3_a4
ER  - 
%0 Journal Article
%A V. Ya. Derr
%T On an adequate description of adjoint operator
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 43-63
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2011_3_a4/
%G ru
%F VUU_2011_3_a4
V. Ya. Derr. On an adequate description of adjoint operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2011), pp. 43-63. http://geodesic.mathdoc.fr/item/VUU_2011_3_a4/

[1] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971, 104 pp. | MR

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 781 pp. | MR

[3] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 495 pp. | MR | Zbl

[4] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v. 1, Inostr. lit., M., 1953, 346 pp. | MR

[5] Koddington E. F., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Inostr. lit., M., 1958, 474 pp.

[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 526 pp. | MR | Zbl

[7] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[8] Stepanov V. V., Kurs differentsialnykh uravnenii, Nauka, M., 1959, 468 pp.

[9] Derr V. Ya., Teoriya lineinykh operatorov v gilbertovykh prostranstvakh, Izd-vo Udm. un-ta, Izhevsk, 2010, 106 pp.

[10] Lando Yu. K., “Ob indekse i normalnoi razreshimosti integro-differentsialnykh operatorov”, Differents. uravneniya, 4:6 (1968), 1112–1126 | MR | Zbl

[11] Parkhimovich I. V., “Mnogotochechnye kraevye zadachi dlya lineinykh integro-differentsialnykh uravnenii v klassakh gladkikh funktsii”, Differents. uravneniya, 8:3 (1972), 549–552 | MR | Zbl

[12] Parkhimovich I. V., “O postroenii $s$-sopryazhennykh operatorov k integro-differentsialnym”, Differents. uravneniya, 8:8 (1972), 1486–1493 | MR | Zbl

[13] Tvrdy M., Veivoda O., “General boundary value problems for an integrodifferential system and its adjoints”, Čas. pestov. math., 97 (1973), 26–42 | MR

[14] Tvrdy M., Veivoda O., “General boundary value problems for an integrodifferential system and its adjoints”, Čas. pestov. math., 98 (1974), 399–419 | MR

[15] Schwabik S., Tvrdy M., Veivoda O., Differential and integral equations: boundary value problems and adjoints, Academia, Prague, 1979, 246 pp. | MR | Zbl

[16] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 277 pp. | MR | Zbl

[17] Maksimov V. P., Rakhmatullina L. F., “Sopryazhennoe uravnenie dlya obschei lineinoi kraevoi zadachi”, Differents. uravneniya, 13:11 (1977), 1966–1973 | MR | Zbl

[18] Derr V. Ya., Kvazidifferentsialnye uravneniya: sopryazhennye kraevye zadachi, Dep. v VINITI, 11.05.84. No 2994-84, Udm. gos. un-t, Izhevsk, 1984, 40 pp.

[19] Derr V. Ya., “Sopryazhennoe uravnenie dlya lineinoi funktsionalno-kvazidifferentsialnoi kraevoi zadachi”, Kraevye zadachi, Perm, 1985, 48–52 | Zbl

[20] Cole R., “The expansion problem with boundary conditions at a finite set points”, Canad. J. Math., 13 (1961), 462–479 | DOI | MR | Zbl

[21] Cole R., “General boundary conditions for an ordinary lineary differential system”, Trans. Amer. Math. Soc., 3 (1964), 521–550 | DOI | MR

[22] Krall A. M., “Differential operators and their adjoints under integral and multie point boundary conditions”, J. Different. Equat., 4:3 (1964), 326–336 | MR

[23] Krall A. M., “Boundary value problems with interior-point boundary conditions”, Pacific J. Math., 29 (1969), 561–570 | DOI | MR

[24] Zettl A., “Adjoint and selfadjoint boundary value problems with interface conditions”, SIAM J. Appl. Math., 16 (1968), 852–859 | DOI | MR

[25] Bryan R. N., “Adjoint interior-point boundary value conditions for lineary differential operators”, Canad. Math. Bul., 20 (1977), 447–450 | DOI | MR | Zbl

[26] Brown R. C., Tvrdy M., “Generalised boundary value problems with abstract side conditions and their adjoints. II”, Czechoslovak. Math. J., 31(160) (1980), 501–509 | MR

[27] Elias U., “The extremal solutions of the equation $Ly+p(x)y=0$”, J. of Math. anal. and appl., 55 (1975), 253–265 | DOI | MR

[28] Kusano T.,Naito M., “Oscillation criteria of general linear ordinary differential equations”, Pacific J. of Math., 92:2 (1981), 345–358 | DOI | MR

[29] Nehari Z., “Disconjugate linear differential operators”, Trans. Amer. J. Math. Soc., 129 (1969), 500–516 | DOI | MR

[30] Trench W. F., “Canonical forms and principal systems for general disconjugate equations”, Trans. Amer. J. Math. Soc., 189 (1974), 319–327 | DOI | MR | Zbl

[31] Derr V. Ya., “Neostsillyatsiya reshenii lineinogo kvazidifferentsialnogo uravneniya”, Izv. Instituta matematiki i informatiki. UdGU (Izhevsk), 1999, no. 1(16), 3–105

[32] Shin D., “O resheniyakh lineinogo kvazidifferentsialnogo uravneniya $n$-go poryadka”, Matem. sb., 7(49):3 (1940), 479–532 | MR | Zbl

[33] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974, 126 pp. | MR | Zbl

[34] Azbelev N. V., “O nekotorykh tendentsiyakh v obobscheniyakh differentsialnogo uravneniya”, Differents. uravneniya, 21:8 (1985), 1291–1304 | MR | Zbl

[35] Anokhin A. V., “O lineinykh impulsnykh sistemakh dlya funktsionalno-differentsialnykh uravnenii”, Doklady AN SSSR, 286:5 (1986), 1037–1040 | MR | Zbl

[36] Pokornyi Yu. V., “O neklassicheskoi zadache Valle Pussena”, Differents. uravneniya, 14:6 (1978), 1018–1027 | MR

[37] Pokornyi Yu. V., “O pereopredelennoi zadache Valle Pussena”, Differents. uravneniya, 15:4 (1979), 761 | MR

[38] Pokornyi Yu. V., Lazarev K. P., “Nekotorye ostsillyatsionnye teoremy dlya mnogotochechnykh zadach”, Differents. uravneniya, 23:4 (1987), 658–670 | MR | Zbl

[39] Das P. C., Prasad U. S., “Adjoints and selfadjointness for a differential operator with varying structure”, Proc. of Royal Soc. of Edinburgh A, 93 (1982), 15–34 | DOI | MR

[40] Derr V. Ya., “K obobschennoi zadache Valle Pussena”, Differents. uravneniya, 23:11 (1987), 105–112 | MR

[41] Litmanovich O. Yu., Spektralnye svoistva funktsii Grina. Integralnye preobrazovaniya s konechnymi predelami, Diss. $\dots$ kand. fiz.-mat. nauk, Izhevsk, 1995, 139 pp.

[42] Bravyi E. I., Lineinye funktsionalno-differentsialnye uravneniya s vnutrennimi singulyarnostyami, Diss. $\dots$ kand. fiz.-mat. nauk, Perm, 1996, 107 pp.