Figures of equilibrium of liquid self-gravitating inhomogeneous mass
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2011), pp. 142-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the inhomogeneous self-gravitating liquid spheroid with confocal stratification which rotates around the minor semiaxis and is in equilibrium. General relationships for pressure, angular velocity and gravitational potential of the spheroid with any density function are obtained. Special cases of piecewise constant and continuous density functions are analyzed.
Keywords: self-gravitating fluid, spheroid
Mots-clés : confocal stratification, Euler equations.
@article{VUU_2011_3_a12,
     author = {I. A. Bizyaev and T. B. Ivanova},
     title = {Figures of equilibrium of liquid self-gravitating inhomogeneous mass},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {142--153},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_3_a12/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - T. B. Ivanova
TI  - Figures of equilibrium of liquid self-gravitating inhomogeneous mass
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 142
EP  - 153
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_3_a12/
LA  - ru
ID  - VUU_2011_3_a12
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A T. B. Ivanova
%T Figures of equilibrium of liquid self-gravitating inhomogeneous mass
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 142-153
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2011_3_a12/
%G ru
%F VUU_2011_3_a12
I. A. Bizyaev; T. B. Ivanova. Figures of equilibrium of liquid self-gravitating inhomogeneous mass. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2011), pp. 142-153. http://geodesic.mathdoc.fr/item/VUU_2011_3_a12/

[1] Montalvo D., Martinez F. J., Cisneros J., On equilibrium figures for ideal fluids in the form of confocal spheroids rotating with common and different angular velocities, 1982

[2] Véronnet A., “Rotation de l'ellipsoide heterogene et figure exacte de la Terre”, Journ. de Mathematiques pures et appliquees, 1919

[3] Appel P., Figury ravnovesiya vraschayuscheisya odnorodnoi zhidkosti, ONTI, M.–L., 1936, 376 pp.

[4] Littlton R. A., Ustoichivost vraschayuschikhsya mass zhidkosti, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2001, 240 pp.

[5] Likhtenshtein L., Figury ravnovesiya vraschayuscheisya zhidkosti, NITs Regulyarnaya i khaoticheskaya dinamika, Moskva–Izhevsk, 2001, 252 pp.

[6] Lyapunov A. M., Sobranie sochinenii, v. 3, 1959, 376 pp. | MR

[7] Pitsetti P., Osnovy mekhanicheskoi teorii figury planet, Moskva, 1933, 170 pp.

[8] Chaplygin S. A., “Ustanovivsheesya vraschenie zhidkogo neodnorodnogo sferoida”, Sobranie sochinenii, v. 2, Gidrodinamika. Aerodinamika, 1948, 576–585