Invariance defect of sets with respect to differential inclusion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 98-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A differential inclusion generated by a control system on a finite time interval is considered. The invariance of sets with respect to differential inclusion is investigated. The invariance defect of non-invariant sets with respect to differential inclusion is introduced. An example is presented.
Keywords: control system, differential inclusion, Hamiltonian, invariance, invariance defect.
@article{VUU_2011_2_a6,
     author = {V. N. Ushakov and A. A. Zimovets},
     title = {Invariance defect of sets with respect to differential inclusion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {98--111},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a6/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Zimovets
TI  - Invariance defect of sets with respect to differential inclusion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 98
EP  - 111
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a6/
LA  - ru
ID  - VUU_2011_2_a6
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Zimovets
%T Invariance defect of sets with respect to differential inclusion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 98-111
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a6/
%G ru
%F VUU_2011_2_a6
V. N. Ushakov; A. A. Zimovets. Invariance defect of sets with respect to differential inclusion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 98-111. http://geodesic.mathdoc.fr/item/VUU_2011_2_a6/

[1] Kurzhanski A. B., Filippova T. F., “On the set-valued calculus in problems of viability and control for dynamic processes: the evolution equation”, Les Annales de l'Institut Henry Poincare, 1989, 339–363 | MR | Zbl

[2] Kurzhanski A. B., Filippova T. F., “Perturbation techniques for viability and control”, Lect. Notes in Control, Inform. Sci., 180, 1992, 394–403 | DOI | MR | Zbl

[3] Kurzhanski A. B., Filippova T. F., On the Theory of Trajectory Tubes – A Mathematical Formalism for Uncertain Dynamics, Viability and Control, The Fields Institute for Research in Mathematical Sciences, June 15 1993, 67 pp. | MR | Zbl

[4] Filippova T. F., “A Note on the Evolution Property of the Assembly of Viable Solutions to a Differential Inclusion”, Computers Math. Applic., 25 (1993), 115–121 | DOI | MR | Zbl

[5] Aubin J-P., Frankowska H., “The Viability Kernel Algorithm for Computing Value Functions of Infinite Horizon Optimal Control Problems”, Journal of Mathematical Analysis and Applications, 201:8, 15 July (1996), 555–576 | DOI | MR | Zbl

[6] Tonkov E. L., Panasenko E. A., “Funktsii Lyapunova i polozhitelno invariantnye mnozhestva differentsialnykh vklyuchenii”, Differents. uravneniya, 43:6 (2007), 859–860

[7] Tonkov E. L., Panasenko E. A., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Trudy Matem. in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[8] Quincampoix M., Buckdahn R., Rainer C., Teichman J., “Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems”, Bulletin des Sciences Mathematiques, 134 (2010), 207–214 | DOI | MR | Zbl

[9] Subbotina N. N., Ushakov V. N., “On characteristic differential inclusions to unified differential games”, Proceedings of the IX-th International Symposium on Dynamic Games and Applications (December, 18–21, 2000), University of South Australia, Adelaide, Australia, 464–467

[10] Ushakov V. N., Zavarin A. B., “O vydelenii yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Prikl. matematika i mekhanika, 65:5 (2001), 831–842 | MR | Zbl

[11] Ushakov V. N., Neznakhin A. A., “Setochnyi metod priblizhennogo postroeniya yadra vyzhivaemosti dlya differentsialnogo vklyucheniya”, Zhurn. vych. mat. i mat. fiziki, 41:6 (2001), 895–908 | MR | Zbl

[12] Ushakov V. N., Latushkin Ya. A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 178–194 | MR | Zbl

[13] Ushakov V. N., Brykalov S. A., Latushkin Y. A., “Stable and unstable sets in problems of conflict control”, Functional Differential Equations, 15:3–4 (2008), 309–338 | MR | Zbl

[14] Ushakov V. N., Matviichuk A. R., Lebedev P. D., “Defekt stabilnosti v igrovoi zadache o sblizhenii v moment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 2010, no. 3, 87–103

[15] Ushakov V. N., Malëv A. G., “K voprosu o defekte stabilnosti mnozhestv v igrovoi zadache o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 199–222