Quasi-levels of the discrete Schrödinger operator for a quantum waveguide
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 88-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We proved that the discrete Schrödinger operator corresponding to a quantum waveguide with a small exponentially decreasing potential has quasi-levels (eigenvalues or resonances). The asymptotic formulas for these quasi-levels are obtained.
Keywords: discrete Schrödinger equation, eigenvalue, resonance.
@article{VUU_2011_2_a5,
     author = {T. S. Tinyukova},
     title = {Quasi-levels of the discrete {Schr\"odinger} operator for a~quantum waveguide},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {88--97},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a5/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - Quasi-levels of the discrete Schrödinger operator for a quantum waveguide
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 88
EP  - 97
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a5/
LA  - ru
ID  - VUU_2011_2_a5
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T Quasi-levels of the discrete Schrödinger operator for a quantum waveguide
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 88-97
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a5/
%G ru
%F VUU_2011_2_a5
T. S. Tinyukova. Quasi-levels of the discrete Schrödinger operator for a quantum waveguide. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 88-97. http://geodesic.mathdoc.fr/item/VUU_2011_2_a5/

[1] Mireles F., Kirczenow G., “Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires”, Phys. Rev. B, 64 (2001), 024426, 13 pp. | DOI

[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR

[3] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl

[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR

[5] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969, 396 pp. | MR