The statistically invariant sets of controllable systems with random parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 68-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S. A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on $t$ right-hand part without assumption of uniqueness of solution.
Keywords:
controllable systems, dynamical systems, differential inclusions, statistically invariant sets with probability one.
@article{VUU_2011_2_a4,
author = {L. I. Rodina},
title = {The statistically invariant sets of controllable systems with random parameters},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {68--87},
publisher = {mathdoc},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/}
}
TY - JOUR AU - L. I. Rodina TI - The statistically invariant sets of controllable systems with random parameters JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2011 SP - 68 EP - 87 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/ LA - ru ID - VUU_2011_2_a4 ER -
%0 Journal Article %A L. I. Rodina %T The statistically invariant sets of controllable systems with random parameters %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2011 %P 68-87 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/ %G ru %F VUU_2011_2_a4
L. I. Rodina. The statistically invariant sets of controllable systems with random parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 68-87. http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/