The statistically invariant sets of controllable systems with random parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 68-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S. A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on $t$ right-hand part without assumption of uniqueness of solution.
Keywords: controllable systems, dynamical systems, differential inclusions, statistically invariant sets with probability one.
@article{VUU_2011_2_a4,
     author = {L. I. Rodina},
     title = {The statistically invariant sets of controllable systems with random parameters},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {68--87},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/}
}
TY  - JOUR
AU  - L. I. Rodina
TI  - The statistically invariant sets of controllable systems with random parameters
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 68
EP  - 87
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/
LA  - ru
ID  - VUU_2011_2_a4
ER  - 
%0 Journal Article
%A L. I. Rodina
%T The statistically invariant sets of controllable systems with random parameters
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 68-87
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/
%G ru
%F VUU_2011_2_a4
L. I. Rodina. The statistically invariant sets of controllable systems with random parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 68-87. http://geodesic.mathdoc.fr/item/VUU_2011_2_a4/

[1] Aubin J.-P., Viability Theory, Birkhauser, Boston–Basel–Berlin, 1991, 543 pp. | MR | Zbl

[2] Panasenko E. A., Tonkov E. L., “Funktsii Lyapunova i polozhitelno invariantnye mnozhestva differentsialnykh vklyuchenii”, Differents. uravneniya, 43:6 (2007), 859–860

[3] Panasenko E. A., Tonkov E. L., “Ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii i funktsii Lyapunova”, Trudy Matem. in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[4] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Trudy In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201

[5] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[6] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp. | MR

[7] Anosov D. V., Aranson S. Kh., Arnold V. I., Bronshtein I. U., Grines V. Z., Ilyashenko Yu. S., Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR

[8] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. | MR | Zbl

[9] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 623 pp. | MR

[10] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[12] Perov A. I., “Neskolko zamechanii otnositelno differentsialnykh neravenstv”, Izvestiya VUZov. Matematika, 1965, no. 4(47), 104–112 | MR | Zbl

[13] Chaplygin S. A., “Novyi metod priblizhennogo integrirovaniya differentsialnykh uravnenii”, Izbrannye trudy. Mekhanika zhidkosti i gaza. Matematika, Nauka, M., 1976, 307–362 | MR

[14] Filippov A. F., Vvedenie v teoriyu differentsialnykh uravnenii, Editorial URSS, M., 2004, 240 pp.

[15] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[16] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR

[17] Korolyuk V. S., Portenko N. I., Skorokhod A. V., Turbin A. F., Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985, 640 pp. | MR | Zbl

[18] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975, 320 pp. | MR

[19] Rodina L. I., Tonkov E. L., “Statisticheski slabo invariantnye mnozhestva upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 67–86 | MR | Zbl