The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 52-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The maximum principle in the terminal optimization problem for general nonlinear Goursat–Darboux system is proved. The right part of differential equation is Caratheodory function. We consider the case when a mixed derivative of system solution is summable function.
Keywords: nonlinear Goursat–Darboux system, solutions having summable mixed derivatives, terminal optimization problem, maximum principle.
@article{VUU_2011_2_a3,
     author = {I. V. Lisachenko and V. I. Sumin},
     title = {The maximum principle for terminal optimization problem connected with {Goursat{\textendash}Darboux} system in the class of functions having summable mixed derivatives},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {52--67},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a3/}
}
TY  - JOUR
AU  - I. V. Lisachenko
AU  - V. I. Sumin
TI  - The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 52
EP  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a3/
LA  - ru
ID  - VUU_2011_2_a3
ER  - 
%0 Journal Article
%A I. V. Lisachenko
%A V. I. Sumin
%T The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 52-67
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a3/
%G ru
%F VUU_2011_2_a3
I. V. Lisachenko; V. I. Sumin. The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 52-67. http://geodesic.mathdoc.fr/item/VUU_2011_2_a3/

[1] Egorov A. I., “Optimalnye protsessy v sistemakh s raspredelennymi parametrami i nekotorye zadachi teorii invariantnosti”, Izv. AN SSSR. Ser. matem., 29:6 (1965), 1205–1260 | MR | Zbl

[2] Lure K. A., Optimalnoe upravlenie v zadachakh matematicheskoi fiziki, Nauka, M., 1975, 478 pp. | MR

[3] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004, 504 pp. | MR

[4] Srochko V. A., Variatsionnyi printsip maksimuma i metody linearizatsii v zadachakh optimalnogo upravleniya, izd-vo Irkutskogo un-ta, Irkutsk, 1989, 160 pp. | MR

[5] Vasilev O. V., Srochko V. A., Terletskii V. A., Metody optimizatsii i ikh prilozheniya{. Chast 2.} Optimalnoe upravlenie, Nauka, Novosibirsk, 1990, 151 pp. | MR

[6] Tuan H. D., “On solution sets of nonconvex Darboux problems and applications to optimal control with endpoint constraints”, J. Austral. Math. Soc. Ser. B, 37 (1996), 354–391 | DOI | MR | Zbl

[7] Sumin V. I., “Ob osobykh upravleniyakh potochechnogo printsipa maksimuma v raspredelennykh zadachakh optimizatsii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 70–80

[8] Tolstonogov A. A., “Teorema suschestvovaniya optimalnogo upravleniya v zadache Gursa–Darbu bez predpolozheniya vypuklosti”, Izv. RAN. Ser. matem., 64:4 (2000), 163–182 | DOI | MR | Zbl

[9] Idczak D., Majewski M., Walczak S., “Stability analysis of solutions to an optimal control problem associated with a Goursat–Darboux problem”, Int. J. Appl. Math. Comput. Sci., 13:1 (2003), 29–44 | MR | Zbl

[10] Idczak D., “The bang-bang principle for the Goursat–Darboux problem”, Int. J. Contr., 76:11 (2003), 1089–1904 | DOI | MR

[11] Pogodaev N. I., “O resheniyakh sistemy Gursa–Darbu s granichnymi i raspredelennymi upravleniyami”, Differents. uravneniya, 43:8 (2007), 1116–1126 | MR | Zbl

[12] Plotnikov V. I., Sumin V. I., “Optimizatsiya ob'ektov s raspredelennymi parametrami, opisyvaemykh sistemami Gursa–Darbu”, Zh. vychisl. matem. i matem. fiz., 12:1 (1972), 61–77 | MR | Zbl

[13] Suryanarayana M. B., “Necessary conditions for optimization problems with hyperbolic partial differential equations”, SIAM J. Control., 11:1 (1973), 130–147 | DOI | MR | Zbl

[14] Plotnikov V. I., Sumin V. I., “Optimizatsiya raspredelennykh sistem v lebegovom prostranstve”, Sib. matem. zhurnal, 22:6 (1981), 142–161 | MR | Zbl

[15] Matveev A. S., Yakubovich V. A., “Optimalnoe upravlenie nekotorymi sistemami s raspredelennymi parametrami”, Sib. matem. zhurnal, 19:5 (1978), 1109–1140 | MR | Zbl

[16] Gavrilov V. S., Sumin M. I., “Parametricheskaya optimizatsiya nelineinykh sistem Gursa–Darbu s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 44:6 (2004), 1002–1022 | MR | Zbl

[17] Sumin V. I., Funktsionalnye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami, Izd-vo NNGU, N. Novgorod, 1992, 110 pp.

[18] Sumin V. I., “Upravlyaemye funktsionalnye volterrovy uravneniya v lebegovykh prostranstvakh”, Vestnik Nizhegorodskogo universiteta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 1998, no. 2(19), 138–151

[19] Sumin V. I., Ob upravlyaemykh funktsionalnykh volterrovykh uravneniyakh v lebegovykh prostranstvakh, Dep. v VINITI 03.09.98. No 2742-V98, NNGU, N. Novgorod, 1998, 96 pp.

[20] Sumin V. I., “Volterrovy funktsionalnye uravneniya i printsip maksimuma dlya raspredelennykh optimizatsionnykh zadach”, Vestnik Nizhegorodskogo universiteta. Matematika, 2004, no. 1(2), 178–191

[21] Plotnikov V. I., “Neobkhodimye usloviya optimalnosti dlya upravlyaemykh sistem obschego vida”, Dokl. AN SSSR, 199:2 (1971), 275–278 | MR | Zbl

[22] Plotnikov V. I., “Neobkhodimye i dostatochnye usloviya optimalnosti i usloviya edinstvennosti optimiziruyuschikh funktsii dlya upravlyaemykh sistem obschego vida”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 652–679 | MR | Zbl

[23] Lisachenko I. V., Sumin V. I., “Ob usloviyakh ustoichivosti suschestvovaniya globalnykh reshenii upravlyaemoi zadachi Gursa–Darbu”, Vestnik Nizhegorodskogo universiteta. Matematicheskoe modelirovanie i optimalnoe upravlenie, 2006, no. 2(31), 64–81

[24] Lisachenko I. V., Sumin V. I., Usloviya sokhraneniya globalnoi razreshimosti zadachi Gursa–Darbu pri vozmuschenii upravleniya, Dep. v VINITI 06.02.2008. No 85-V2008

[25] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 536 pp. | MR

[26] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979, 429 pp. | MR

[27] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp. | MR

[28] Novozhenov M. M., Sumin V. I., Sumin M. I., Metody optimalnogo upravleniya sistemami matematicheskoi fiziki, Uchebnoe posobie, Izd-vo GGU, Gorkii, 1986, 87 pp.

[29] Kazimirov V. I., Plotnikov V. I., Starobinets I. M., “Abstraktnaya skhema metoda variatsii i neobkhodimye usloviya ekstremuma”, Izv. AN SSSR. Ser. matem., 49:1 (1985), 141–159 | MR