Recurrent and almost recurrent multivalued maps and their selections
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 19-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some classes of recurrent and almost recurrent multivalued maps are considered. It is proved that such multivalued maps have recurrent and almost recurrent selections (from corresponding classes).
Keywords: recurrent function, selection
Mots-clés : multimap.
@article{VUU_2011_2_a2,
     author = {L. I. Danilov},
     title = {Recurrent and almost recurrent multivalued maps and their selections},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {19--51},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Recurrent and almost recurrent multivalued maps and their selections
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 19
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a2/
LA  - ru
ID  - VUU_2011_2_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Recurrent and almost recurrent multivalued maps and their selections
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 19-51
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a2/
%G ru
%F VUU_2011_2_a2
L. I. Danilov. Recurrent and almost recurrent multivalued maps and their selections. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 19-51. http://geodesic.mathdoc.fr/item/VUU_2011_2_a2/

[1] Michael E., “Continuous selections. I”, Ann. Math., 63:2 (1956), 361–381 | DOI | MR

[2] Dolbilov A. M., Shneiberg I. Ya., “Pochti periodicheskie mnogoznachnye otobrazheniya i ikh secheniya”, Sib. matem. zhurnal, 32:2 (1991), 172–175 | MR | Zbl

[3] Fryszkowski A., “Continuous selections for a class of non-convex multivalued maps”, Studia Math., 76:2 (1983), 163–174 | MR | Zbl

[4] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izvestiya otdela matematiki i informatiki UdGU (Izhevsk), 1993, no. 1, 16–78 | Zbl

[5] Danilov L. I., “O pochti periodicheskikh secheniyakh mnogoznachnykh otobrazhenii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 34–41

[6] Rokhlin V. A., “O razlozhenii dinamicheskoi sistemy na tranzitivnye komponenty”, Matem. sbornik, 25(67):2 (1949), 235–249 | MR | Zbl

[7] Kuratowski K., Ryll-Nardzewski C., “A general theorem on selectors”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 397–403 | MR | Zbl

[8] Danilov L. I., “On Weyl almost periodic selections of multivalued maps”, J. Math. Anal. Appl., 316:1 (2006), 110–127 | DOI | MR | Zbl

[9] Danilov L. I., “O pochti periodicheskikh po Bezikovichu secheniyakh mnogoznachnykh otobrazhenii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 1, 97–120

[10] Danilov L. I., “Ob odnom klasse pochti periodicheskikh po Veilyu sechenii mnogoznachnykh otobrazhenii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 1, 34–55

[11] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheckie secheniya mnogoznachnykh otobrazhenii”, Matem. sbornik, 188:10 (1997), 3–24 | DOI | MR | Zbl

[12] Danilov L. I., “Pochti periodicheskie po Veilyu secheniya nositelei meroznachnykh funktsii”, Sibirskie elektronnye matematicheskie izvestiya, 3 (2006), 384–392 | MR | Zbl

[13] Andres J., “Bounded, almost-periodic and periodic solutions of quasilinear differential inclusions”, Differential Inclusions and Optimal Control, Lecture Notes in Nonlin. Anal., 2, eds. J. Andres, L. Gorniewicz, P. Nistri, 1998, 35–50

[14] Irisov A. E., Tonkov E. L., “Dostatochnye usloviya optimalnosti rekurrentnykh po Birkgofu dvizhenii differentsialnogo vklyucheniya”, Vestnik Udmurtskogo universiteta. Matematika, 2005, no. 1, 59–74

[15] Panasenko E. A., “O suschestvovanii rekurrentnykh i pochti periodicheskikh reshenii differentsialnogo vklyucheniya”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 42–57 | MR

[16] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2004, 456 pp.

[17] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953, 396 pp. | MR

[18] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 216 pp. | MR

[19] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982, 271 pp. | MR | Zbl

[20] Cheban D., Mammana C., “Invariant manifolds, almost periodic and almost automorphic solutions of second-order monotone equations”, International Journal of Evolution Equations, 1:4 (2005), 319–343 | MR | Zbl

[21] Cheban D., “Levitan almost periodic and almost automorphic solutions of V-monotone differential equations”, Journal of Dynamics and Differential Equations, 20:3 (2008), 669–697 | DOI | MR | Zbl

[22] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi. Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973, 551 pp. | MR

[23] Danilov L. I., On equi-Weyl almost periodic selections of multivalued maps, Preprint, 2003, arXiv: math.CA/0310010 | MR