Infinitesimal characterization of Nash equilibrium for differential games with many players
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Nash equilibrium for a differential game with many players. The condition on a multivalued map under which any value of this map is a set of Nash equilibrium payoffs is obtained. This condition is written in infinitesimal form. The sufficient condition for the given complex of continuous functions to provide a Nash equilibrium is obtained. This condition is a generalization of the method based on system of Hamilton–Jacobi equations.
Keywords: Nash equilibrium, differential games, generalized derivatives.
@article{VUU_2011_2_a0,
     author = {Yu. V. Averboukh},
     title = {Infinitesimal characterization of {Nash} equilibrium for differential games with many players},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--11},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_2_a0/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Infinitesimal characterization of Nash equilibrium for differential games with many players
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 3
EP  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_2_a0/
LA  - ru
ID  - VUU_2011_2_a0
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Infinitesimal characterization of Nash equilibrium for differential games with many players
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 3-11
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2011_2_a0/
%G ru
%F VUU_2011_2_a0
Yu. V. Averboukh. Infinitesimal characterization of Nash equilibrium for differential games with many players. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2011), pp. 3-11. http://geodesic.mathdoc.fr/item/VUU_2011_2_a0/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR

[3] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka. Uralskoe otdelenie, Ekaterinburg, 1993, 185 pp. | MR

[4] Kononenko A. F., Chistyakov Yu. E., “O ravnovesnykh pozitsionnykh strategiyakh v differentsialnykh igrakh mnogikh lits”, Doklady AN SSSR, 299:5 (1988), 1053–1056 | MR | Zbl

[5] Chistyakov S. V., “O beskoalitsionnykh differentsialnykh igrakh”, Doklady AN SSSR, 259:5 (1981), 1052–1055 | MR

[6] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, Academic Press, London–New York, 1995, 535 pp. | MR | Zbl

[7] Subbotin A. I., Obobschennye resheniya differentsialnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003, 336 pp.

[8] Guseinov H. G., Subbotin A. I., Ushakov V. N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Contr. Inform. Theory, 14:3 (1985), 155–167 | MR | Zbl