The Lippmann–Schwinger equation for quantum wires
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 99-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the discrete Schrodinger operator with a potential of a special form defined on a graph whose nodes lie on the union of two intersected straight lines. We prove that there exist unique quasi-levels (eigenvalues or resonances) in the neighborhoods of the point $\pm2$ (these points consist a boundary of the essential spectrum). The asymptotic formulae for quasi-levels are obtained. We find the conditions for the coefficient of reflection is equal to zero.
Keywords: eigenvalue, resonance, discrete Lippmann–Schwinger equation.
@article{VUU_2011_1_a9,
     author = {T. S. Tinyukova},
     title = {The {Lippmann{\textendash}Schwinger} equation for quantum wires},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {99--104},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_1_a9/}
}
TY  - JOUR
AU  - T. S. Tinyukova
TI  - The Lippmann–Schwinger equation for quantum wires
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 99
EP  - 104
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_1_a9/
LA  - ru
ID  - VUU_2011_1_a9
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%T The Lippmann–Schwinger equation for quantum wires
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 99-104
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2011_1_a9/
%G ru
%F VUU_2011_1_a9
T. S. Tinyukova. The Lippmann–Schwinger equation for quantum wires. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 99-104. http://geodesic.mathdoc.fr/item/VUU_2011_1_a9/

[1] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72 (2005), 056611, 7 pp. | DOI | MR

[2] Chakrabarti A., “Fano resonance in discrete lattice models: Controlling lineshapes with impurities”, Phys. Letters A, 336:4–5 (2007), 507–512 | DOI | MR

[3] Tinyukova T. S., Chuburin Yu. P., “Kvaziurovni diskretnogo operatora Shredingera s ubyvayuschim potentsialom na grafe”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 2009, no. 3, 104–113

[4] Morozova L. E., Chuburin Yu. P., “Ob urovnyakh odnomernogo diskretnogo operatora Shredingera s ubyvayuschim potentsialom”, Izvestiya Instituta matematiki i informatiki (UdGU), 2004, no. 1(29), 85–94 | MR

[5] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh peremennykh, Mir, M., 1969, 396 pp. | MR