The statistically weak invariant sets of control systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 67-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the conditions that allow to estimate the relative frequency of occurrence of the attainable set of a control system in some given set. The set is called statistically invariant if the relative frequency of occurrence in this set is equal to one. We also derive the conditions of the statistically weak invariance of the given set with respect to controllable system, that is, for every initial point from this set, at least one solution of the control system is statistically invariant. We suggest that the images of the right hand part of the differential inclusions corresponding for the given control system are closed but may be not compact. The main results are formulated in the terms of Lyapunov functions, metric of Hausdorff–Bebutov and the dynamical system of shifts that attended in the right hand part of the differential inclusion.
Keywords: controllable systems, dynamical systems, differential inclusions, weakly invariant and statistically weakly invariant sets.
@article{VUU_2011_1_a7,
     author = {L. I. Rodina and E. L. Tonkov},
     title = {The statistically weak invariant sets of control systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {67--86},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_1_a7/}
}
TY  - JOUR
AU  - L. I. Rodina
AU  - E. L. Tonkov
TI  - The statistically weak invariant sets of control systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 67
EP  - 86
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_1_a7/
LA  - ru
ID  - VUU_2011_1_a7
ER  - 
%0 Journal Article
%A L. I. Rodina
%A E. L. Tonkov
%T The statistically weak invariant sets of control systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 67-86
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2011_1_a7/
%G ru
%F VUU_2011_1_a7
L. I. Rodina; E. L. Tonkov. The statistically weak invariant sets of control systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 67-86. http://geodesic.mathdoc.fr/item/VUU_2011_1_a7/

[1] Panasenko E. A., Tonkov E. L., “Ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii i funktsii Lyapunova”, Trudy Matem. in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[2] Panasenko E. A., Rodina L. I., Tonkov E. L., “Pogloschaemost, nebluzhdaemost i rekurrentnost mnozhestva dostizhimosti upravlyaemoi sistemy”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 97–104

[3] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Trudy In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201

[4] Rodina L. I., Tonkov E. L., “Statisticheskie kharakteristiki mnozhestva dostizhimosti upravlyaemoi sistemy, nebluzhdaemost i minimalnyi tsentr prityazheniya”, Nelineinaya dinamika, 5:2 (2009), 265–288

[5] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp. | MR

[6] Anosov D. V., Aranson S. Kh., Arnold V. I., Bronshtein I. U., Grines V. Z., Ilyashenko Yu. S., Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Ser. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR

[7] Anosov D. V., Lektsii po lineinoi algebre, Regulyarnaya i khaotich. dinamika, M., 1999, 105 pp. | Zbl

[8] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 623 pp. | MR

[9] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 335 pp. | MR

[10] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR

[11] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Matem. in-ta AN SSSR, 169, 1985, 194–252 | MR | Zbl

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[13] Peano G., “Sull' integrabilita delle equazione differenziali di primo ordine”, Atti. R. Accad. (Torino), 1885/1886, no. 21, 667–685 | Zbl

[14] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[15] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[16] Perov A. I., “Neskolko zamechanii otnositelno differentsialnykh neravenstv”, Izvestiya vuzov. Matematika, 1965, no. 4(47), 104–112 | MR | Zbl

[17] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 768 pp.