@article{VUU_2011_1_a6,
author = {E. E. Ivanko},
title = {Criterion of the stability of optimal route in the travelling salesman problem in case of a~single vertex addition},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {58--66},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2011_1_a6/}
}
TY - JOUR AU - E. E. Ivanko TI - Criterion of the stability of optimal route in the travelling salesman problem in case of a single vertex addition JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2011 SP - 58 EP - 66 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2011_1_a6/ LA - ru ID - VUU_2011_1_a6 ER -
%0 Journal Article %A E. E. Ivanko %T Criterion of the stability of optimal route in the travelling salesman problem in case of a single vertex addition %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2011 %P 58-66 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2011_1_a6/ %G ru %F VUU_2011_1_a6
E. E. Ivanko. Criterion of the stability of optimal route in the travelling salesman problem in case of a single vertex addition. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 58-66. http://geodesic.mathdoc.fr/item/VUU_2011_1_a6/
[1] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Voprosy teorii”, AiT, 1989, no. 9, 3–34 | MR
[2] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Tochnye algoritmy”, AiT, 1989, no. 10, 3–29 | MR | Zbl
[3] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Priblizhennye algoritmy”, AiT, 1989, no. 11, 3–26 | MR | Zbl
[4] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, AiT, 2004, no. 2, 79–92 | MR | Zbl
[5] Sotscov Yu. N., Leontev V. K., Gordeev E., “Some concepts of stability analysis in combinatorial optimization”, Discrete Applied Mathematics, 58 (1995), 169–190 | DOI | MR
[6] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestv optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 41:4 (2005), 89–100 | MR
[7] Devyaterikova M. V., Kolokolov A. A., “Ob ustoichivosti nekotorykh algoritmov tselochislennogo programmirovaniya”, Izv. vuzov. Matem., 2003, no. 12, 41–48 | MR | Zbl
[8] Poort E. S., Aspects of sensitivity analysis for the traveling salesman problem, PhD dissertation, University of Groningen, Groningen, 1997, 191 pp.
[9] Leontev V. K., “Ustoichivost zadachi kommivoyazhera”, Zhurn. vychisl. matematiki i mat. fiziki, 15:5 (1975), 1298–1309 | MR | Zbl
[10] Libura M., van der Poort E. S., Sierksma G., van der Veen J. A., “Stability aspects of the traveling salesman problem based on $k$-best solutions”, Discrete Applied Mathematics, 87 (1998), 159–185 | DOI | MR | Zbl
[11] Ivanko E. E., “Dostatochnye usloviya ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii novoi vershiny i pri udalenii suschestvuyuschei”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 1, 48–57
[12] Bellman R., “Dynamic Programming Treatment of the Travelling Salesman Problem”, J. Assoc. Comput. Mach., 9 (1962), 61–63 | DOI | MR | Zbl
[13] Concorde TSP Solver, http://www.tsp.gatech.edu/concorde/index.html