Exponential stabilization of quasi-linear control systems with incomplete feedback
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New sufficient conditions of exponential stabilization of quasilinear control system with incomplete feedback are received. Consequences for the control system described by quasilinear differential equation of $n$-th order with the observer are obtained.
Keywords: exponential stabilization, nonlinear control system, linear control system, feedback.
@article{VUU_2011_1_a5,
     author = {V. A. Zaitsev},
     title = {Exponential stabilization of quasi-linear control systems with incomplete feedback},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {47--57},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2011_1_a5/}
}
TY  - JOUR
AU  - V. A. Zaitsev
TI  - Exponential stabilization of quasi-linear control systems with incomplete feedback
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2011
SP  - 47
EP  - 57
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2011_1_a5/
LA  - ru
ID  - VUU_2011_1_a5
ER  - 
%0 Journal Article
%A V. A. Zaitsev
%T Exponential stabilization of quasi-linear control systems with incomplete feedback
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2011
%P 47-57
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2011_1_a5/
%G ru
%F VUU_2011_1_a5
V. A. Zaitsev. Exponential stabilization of quasi-linear control systems with incomplete feedback. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 47-57. http://geodesic.mathdoc.fr/item/VUU_2011_1_a5/

[1] Zaitsev V. A., “Soglasovannost i upravlenie spektrom v lineinykh sistemakh s nablyudatelem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 50–80

[2] Zaitsev V. A., “Upravlenie spektrom v lineinykh sistemakh s nepolnoi obratnoi svyazyu”, Differentsialnye uravneniya, 45:9 (2009), 1320–1328 | MR | Zbl

[3] Zaitsev V. A., “Neobkhodimye i dostatochnye usloviya v zadache upravleniya spektrom”, Differentsialnye uravneniya, 46:12 (2010), 1789–1793 | MR | Zbl

[4] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR

[5] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova, Nauka, M., 1966, 576 pp. | MR | Zbl

[6] Zaitsev V. A., Popova S. N., Tonkov E. L., “Eksponentsialnaya stabiliziruemost nelineinykh upravlyaemykh sistem”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 25–29

[7] Popova S. N., Tonkov E. L., “Upravlenie pokazatelyami Lyapunova soglasovannykh sistem. I”, Differentsialnye uravneniya, 30:10 (1994), 1687–1696 | MR | Zbl

[8] Popova S. N., Tonkov E. L., “Soglasovannye sistemy i upravlenie pokazatelyami Lyapunova”, Differentsialnye uravneniya, 33:2 (1997), 226–235 | MR | Zbl

[9] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR