Local parametric identifiability for system with finite family of parameters
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 8-13
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of local parametric identifiability of system in case of finite parameter family was investigated. In introduction the main definitions and necessary denotations are given. In the first part the criterion of local parametric identifiability of systems in case of observation of the accurate solution was obtained. In the the second part the problem of local parametric identifiability of systems was investigated in case of observation of the approximated solution, derived by numerical approximation of the accurate solution. The criterion of local parametric identifiability of systems in this case was obtained also.
Keywords:
local identifiability, systems of differential equations.
@article{VUU_2011_1_a1,
author = {G. I. Volfson},
title = {Local parametric identifiability for system with finite family of parameters},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {8--13},
year = {2011},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2011_1_a1/}
}
TY - JOUR AU - G. I. Volfson TI - Local parametric identifiability for system with finite family of parameters JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2011 SP - 8 EP - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2011_1_a1/ LA - ru ID - VUU_2011_1_a1 ER -
G. I. Volfson. Local parametric identifiability for system with finite family of parameters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2011), pp. 8-13. http://geodesic.mathdoc.fr/item/VUU_2011_1_a1/
[1] Bodunov N. A., Vvedenie v teoriyu lokalnoi parametricheskoi identifitsiruemosti, Izd-vo S-Peterb. un-ta, SPb., 2006, 140 pp.
[2] Bodunov N. A., Volfson G. I., “Lokalnaya identifitsiruemost sistem s peremennym parametrom”, Differentsialnye uravneniya i protsessy upravleniya, 2009, no. 2, 17–31 http://www.math.spbu.ru/diffjournal/j/RU/numbers/2009.2/article.92.html | MR
[3] Volkov E. A., Chislennye metody, Nauka, M., 1987, 130 pp. | MR