Construction of bifurcation diagram and analysis of stability of self-gravitating fluid elliptical cylinder with internal flow
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 77-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Figures of equilibrium are considered and the stability of liquid self-gravitating elliptic cylinder with an internal flow in a class of elliptic indignations are researched. The bifurcation diagram of given system is constructed, areas of existence of the stationary solutions are specified.
Keywords: self-gravitating liquid, elliptic cylinder, stability, Riemann equations.
@article{VUU_2010_4_a8,
     author = {T. B. Ivanova},
     title = {Construction of bifurcation diagram and analysis of stability of self-gravitating fluid elliptical cylinder with internal flow},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {77--86},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a8/}
}
TY  - JOUR
AU  - T. B. Ivanova
TI  - Construction of bifurcation diagram and analysis of stability of self-gravitating fluid elliptical cylinder with internal flow
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 77
EP  - 86
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a8/
LA  - ru
ID  - VUU_2010_4_a8
ER  - 
%0 Journal Article
%A T. B. Ivanova
%T Construction of bifurcation diagram and analysis of stability of self-gravitating fluid elliptical cylinder with internal flow
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 77-86
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a8/
%G ru
%F VUU_2010_4_a8
T. B. Ivanova. Construction of bifurcation diagram and analysis of stability of self-gravitating fluid elliptical cylinder with internal flow. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 77-86. http://geodesic.mathdoc.fr/item/VUU_2010_4_a8/

[1] Dirichlet G. L., “Untersuchungen uber ein Problem der Hydrodynamik”, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen (Mathematisch-Physikalische Klasse), 1857, no. 14, Aug. 10, 203–207; Dirichlet's Werke, v. 2, 28; Borisov A. V., Mamaev I. S. (red.), Dinamika zhidkikh i gazovykh ellipsoidov, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2010, 364 pp.

[2] Fasso F., Lewis D., “Stability properties of the Riemann ellipsoids”, Arch. Rational Mech. Anal., 158 (2001), 259–292 | DOI | MR | Zbl

[3] Jeans J. N., “On the equilibrium of rotating liquid Cilinders”, Phil. Trans. serie A, 200 (1903), 67–104 | DOI | Zbl

[4] Globa-Mikhaïlinko B., “Sur quelques nouvelles figures d'équilibre d'une masse fluide en rotation”, Journal de Mathematiques (7), 2:1 (1916), 1–78 | Zbl

[5] Matthiessen L., Ueber die Gleichgewichtsfiguren homogener frei rotierender Flüssigkeiten, Kiel, 1857; Neue Untersuchungen, Kiel, 1859

[6] Lipschitz R., “Reduction der Bewegung eines flussigen homogenen Ellipsoids auf das Variationsproblem eines einfachen Integrals, und Bestimmung der Bewegung für den Grenzfall eines unendlichen elliptischen Cylinders”, J. reine angew. Math. (Crelle's Journal), 78 (1874), 245–272 | DOI

[7] Love A. E. H., “On the Motion of a Liquid Elliptic Cylinder under its own Attraction”, Quat. J. of Pure and Appl. Math., 23 (1889), 153–158

[8] Riemann B., “Ein Beitrag zu den Untersuchungen über die Bewegung einer flüssigen gleichartigen Ellipsoides”, Abh. d. Königl. Gesell. der Wiss. zu Gottingen, 9, 1861; Borisov A. V., Mamaev I. S. (red.), Dinamika zhidkikh i gazovykh ellipsoidov, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2010, 364 pp.

[9] Appel P., Figury ravnovesiya vraschayuscheisya odnorodnoi zhidkosti, Perev. s frants., ONTI, L.–M., 1936, 376 pp.

[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, IKI, M.–Izhevsk, 2005, 576 pp. | MR

[11] Borisov A. V., Mamaev I. S., Bolsinov A. V., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., Kilin A. A., “The Hamiltonian Dynamics of Self-gravitating Liquid and Gas Ellipsoids”, Regul. Chaotic Dyn., 14:2 (2009), 179–217 | DOI | MR | Zbl

[13] Kondratev B. P., Teoriya potentsiala i figury ravnovesiya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2003, 624 pp.

[14] Littlton R. A., Ustoichivost vraschayuschikhsya mass zhidkosti, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 240 pp.

[15] Likhtenshtein L., Figury ravnovesiya vraschayuscheisya zhidkosti, Per. s nem., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2004, 252 pp.

[16] Markeev A. P., Teoreticheskaya mekhanika, uchebnik dlya universitetov, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2007, 592 pp.

[17] Chandrasekkhar S., Ellipsoidalnye figury ravnovesiya, Mir, M., 1973, 288 pp.