Keywords: reduction, bifurcational diagram, relative equilibriums.
@article{VUU_2010_4_a6,
author = {A. V. Vaskina},
title = {Stationary configurations for the system of three point vortices in circular domain and their stability},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {61--70},
year = {2010},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/}
}
TY - JOUR AU - A. V. Vaskina TI - Stationary configurations for the system of three point vortices in circular domain and their stability JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 61 EP - 70 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/ LA - ru ID - VUU_2010_4_a6 ER -
%0 Journal Article %A A. V. Vaskina %T Stationary configurations for the system of three point vortices in circular domain and their stability %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 61-70 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/ %G ru %F VUU_2010_4_a6
A. V. Vaskina. Stationary configurations for the system of three point vortices in circular domain and their stability. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 61-70. http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/
[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost II. Otnositelnye ravnovesiya”, Regular and Chaotic Dynamics (to appear)
[2] Borisov A. V., Bolsinov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl
[3] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 368 pp. | MR
[4] Borisov A. V., Mamaev I. S., Kilin A. A., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, eds. Borisov A. V., Mamaev I. S., Sokolovskii M. A., Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 414–440 | MR
[5] Katok S. B., “Bifurkatsionnye mnozhestva i integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, Prilozhenie 2, UMN, 27:2 (1972), 126–132
[6] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317 | MR
[7] Markeev A. P., Teoreticheskaya mekhanika, uchebnik dlya universitetov, CheRo, M., 1999, 572 pp.
[8] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964; Milne-Thomson L. M., Theoretical Hydrodynamics, 1968
[9] Mozer Yu., Lektsii o gamiltonovykh sistemakh, KAM-teoriya i problemy ustoichivosti, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 448 pp. | Zbl
[10] Smeil S., “Topologiya i mekhanika”, UMN, 27:2(164) (1972), 77–133 | MR | Zbl
[11] Tatarinov Ya. V., “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Trudy seminara po vektorn. i tenzorn. analizu, 23, 1988, 160–174 | MR | Zbl
[12] Greenhill A. G., “Plane vortex motion”, Quart. J. Pure Appl. Math., 15:58 (1877/78), 10–27
[13] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag. (7), 11 (1931), 617–633 | Zbl
[14] Helmholtz H., “Uber Integrale hydrodinamischen Gleichungen welche den Wirbelbewegungen entsprechen”, J. rein. angew. Math., 55 (1858), 25–55 ; Гельмгольц Г., Основы вихревой теории, ИКИ, М.–Иж., 2002, 82 с. | DOI | Zbl
[15] Lin C. C., “On the motion of vortices in two dimensions. I, II”, Proc. Natl. Acad. Sci. USA, 27:2 (1941), 570–577 ; Lin C. C., On the motion of vortices in two dimensions, Univ. Toronto Press, 1943 | DOI | MR | MR | Zbl | MR
[16] Simakov N. N., “Dynamics of two vortices in circular domain”, Reg. and Ch. Dynamics, 3:4 (1998), 87–94 | DOI | MR | Zbl
[17] Thomson J. J., A treatise on the motion of vortex rings, Macmillan, London, 1883 | Zbl