Stationary configurations for the system of three point vortices in circular domain and their stability
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 61-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, topological approach are used for searching and stability analysis of relative equilibriums for the system of three point vortices of equal in magnitude intensities. It is shown that the system of three point vortices can be reduced by one degree of freedom. We find the two new stationary configurations (isosceles and non-symmetrical collinear), study their bifurcations. The stability analysis is performed for these cases.
Mots-clés : point vortex, equations of motion
Keywords: reduction, bifurcational diagram, relative equilibriums.
@article{VUU_2010_4_a6,
     author = {A. V. Vaskina},
     title = {Stationary configurations for the system of three point vortices in circular domain and their stability},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {61--70},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/}
}
TY  - JOUR
AU  - A. V. Vaskina
TI  - Stationary configurations for the system of three point vortices in circular domain and their stability
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 61
EP  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/
LA  - ru
ID  - VUU_2010_4_a6
ER  - 
%0 Journal Article
%A A. V. Vaskina
%T Stationary configurations for the system of three point vortices in circular domain and their stability
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 61-70
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/
%G ru
%F VUU_2010_4_a6
A. V. Vaskina. Stationary configurations for the system of three point vortices in circular domain and their stability. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 61-70. http://geodesic.mathdoc.fr/item/VUU_2010_4_a6/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topologiya i ustoichivost II. Otnositelnye ravnovesiya”, Regular and Chaotic Dynamics (to appear)

[2] Borisov A. V., Bolsinov A. V., Mamaev I. S., “Topologiya i ustoichivost integriruemykh sistem”, UMN, 65:2(392) (2010), 71–132 | DOI | MR | Zbl

[3] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 368 pp. | MR

[4] Borisov A. V., Mamaev I. S., Kilin A. A., “Dinamika tochechnykh vikhrei vnutri i vne krugovoi oblasti”, Fundamentalnye i prikladnye problemy teorii vikhrei, eds. Borisov A. V., Mamaev I. S., Sokolovskii M. A., Institut kompyuternykh issledovanii, M.–Izhevsk, 2003, 414–440 | MR

[5] Katok S. B., “Bifurkatsionnye mnozhestva i integralnye mnogoobraziya v zadache o dvizhenii tyazhelogo tverdogo tela”, Prilozhenie 2, UMN, 27:2 (1972), 126–132

[6] Kurakin L. G., “Ob ustoichivosti tomsonovskikh vikhrevykh konfiguratsii vnutri krugovoi oblasti”, Nelineinaya dinamika, 5:3 (2009), 295–317 | MR

[7] Markeev A. P., Teoreticheskaya mekhanika, uchebnik dlya universitetov, CheRo, M., 1999, 572 pp.

[8] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964; Milne-Thomson L. M., Theoretical Hydrodynamics, 1968

[9] Mozer Yu., Lektsii o gamiltonovykh sistemakh, KAM-teoriya i problemy ustoichivosti, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 448 pp. | Zbl

[10] Smeil S., “Topologiya i mekhanika”, UMN, 27:2(164) (1972), 77–133 | MR | Zbl

[11] Tatarinov Ya. V., “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Trudy seminara po vektorn. i tenzorn. analizu, 23, 1988, 160–174 | MR | Zbl

[12] Greenhill A. G., “Plane vortex motion”, Quart. J. Pure Appl. Math., 15:58 (1877/78), 10–27

[13] Havelock T. H., “The stability of motion of rectilinear vortices in ring formation”, Philos. Mag. (7), 11 (1931), 617–633 | Zbl

[14] Helmholtz H., “Uber Integrale hydrodinamischen Gleichungen welche den Wirbelbewegungen entsprechen”, J. rein. angew. Math., 55 (1858), 25–55 ; Гельмгольц Г., Основы вихревой теории, ИКИ, М.–Иж., 2002, 82 с. | DOI | Zbl

[15] Lin C. C., “On the motion of vortices in two dimensions. I, II”, Proc. Natl. Acad. Sci. USA, 27:2 (1941), 570–577 ; Lin C. C., On the motion of vortices in two dimensions, Univ. Toronto Press, 1943 | DOI | MR | MR | Zbl | MR

[16] Simakov N. N., “Dynamics of two vortices in circular domain”, Reg. and Ch. Dynamics, 3:4 (1998), 87–94 | DOI | MR | Zbl

[17] Thomson J. J., A treatise on the motion of vortex rings, Macmillan, London, 1883 | Zbl