The stabilization of program motions of balanced gyrostat
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 31-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider program motion of balanced gyrostat. We solve the problem of construction asimptotically stability program motion. The program motion can be any function. Control is received in the form the analytical solution. We solve the problem of stabilization by the direct Lyapunov's method and the method of limiting functions and systems. In this case we can use the Lyapunov's functions having constant signs derivatives.
Keywords: balanced gyrostat, coaxial bodies, functions with constant sings, Lyapunov's function.
Mots-clés : programm motion
@article{VUU_2010_4_a3,
     author = {S. P. Bezglasnyi and M. A. Khudyakova},
     title = {The stabilization of program motions of balanced gyrostat},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {31--38},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a3/}
}
TY  - JOUR
AU  - S. P. Bezglasnyi
AU  - M. A. Khudyakova
TI  - The stabilization of program motions of balanced gyrostat
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 31
EP  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a3/
LA  - ru
ID  - VUU_2010_4_a3
ER  - 
%0 Journal Article
%A S. P. Bezglasnyi
%A M. A. Khudyakova
%T The stabilization of program motions of balanced gyrostat
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 31-38
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a3/
%G ru
%F VUU_2010_4_a3
S. P. Bezglasnyi; M. A. Khudyakova. The stabilization of program motions of balanced gyrostat. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 31-38. http://geodesic.mathdoc.fr/item/VUU_2010_4_a3/

[1] Afanasev V. N., Kolmanovskii V. B., Nosov V. R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya, Vyssh. shk., M., 1989, 447 pp. | MR | Zbl

[2] Letov A. M., Dinamika poleta i upravlenie, Nauka, M., 1969, 359 pp.

[3] Galiullin A. S., Mukhametzyanov I. A., Mukharlyamov R. G., Furasov V. D., Postroenie sistem programmnogo dvizheniya, Nauka, M., 1971, 352 pp. | MR | Zbl

[4] Zubov V. I., Problema ustoichivosti protsessov upravleniya, Sudostroenie, L., 1980, 375 pp. | MR | Zbl

[5] Raushenbakh V. V., Tokar V. I., Upravlenie orientatsiei kosmicheskikh apparatov, Nauka, M., 1974, 589 pp.

[6] Aslanov V. S., Doroshin A. V., “Stabilizatsiya spuskaemogo apparata chastichnoi zakrutki pri osuschestvlenii neupravlyaemogo spuska”, Kosmicheskie issledovaniya, 40:2 (2002), 193–200

[7] Rush N., Abets P., Lalua M., Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980, 301 pp. | MR

[8] Artstein Z., “Topological dynamics of an ordinary equations”, J. Differ. Equat., 23 (1977), 216–223 | DOI | MR | Zbl

[9] Andreev A. S., “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, PMM, 48:2 (1984), 225–232 | MR

[10] Markeev A. P., Teoreticheskaya mekhanika, Ucheb. dlya vuzov, Izdanie vtoroe, dopolnennoe, CheRo, M., 1999, 572 pp.

[11] Bezglasnyi S. P., “The stabilization of program motions of controlled nonlinear mechanical systems”, Korean J. Comput. Appl. Math., 14:1–2 (2004), 251–266 | DOI | MR

[12] Bezglasnyi S. P., Mysina O. A., “Stabilizatsiya programmnykh dvizhenii tverdogo tela na podvizhnoi platforme”, Izvestiya Saratovskogo universiteta. Ser. Matematika. Mekhanika. Informatika, 8:4 (2008), 44–52

[13] Smirnov E. Ya., Pavlikov V. Yu., Scherbakov P. P., Yurkov A. V., Upravlenie dvizheniem mekhanicheskikh sistem, Izd-vo LGU, L., 1985, 316 pp.