Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 172-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article explains the need for orthogonal basis of syllogistics as an alternative to the basis of Aristotle and the need for the choice of extended algebra of sets as a tool for solving problems instead of logic algebra. An algorithm for constructing all possible classes of interpretations of solutions in terms of sets of finite measure has been formulated. Computer simulations to solve the classic tasks of Buhl, Schroeder, Poretsky have been conducted. At the same time additional results to existing solutions have been received.
Keywords: syllogistics, polisillogizm, algebra, sets, orthogonal basis of syllogistics, basis of Aristotle.
@article{VUU_2010_4_a17,
     author = {Y. M. Smetanin},
     title = {Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {172--185},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a17/}
}
TY  - JOUR
AU  - Y. M. Smetanin
TI  - Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 172
EP  - 185
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a17/
LA  - ru
ID  - VUU_2010_4_a17
ER  - 
%0 Journal Article
%A Y. M. Smetanin
%T Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 172-185
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a17/
%G ru
%F VUU_2010_4_a17
Y. M. Smetanin. Algorithm for solving polisillogizm in the orthogonal basis by calculating the constituent sets. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 172-185. http://geodesic.mathdoc.fr/item/VUU_2010_4_a17/

[1] Valkov K. I., Proektsionnoe modelirovanie i avtomatizatsiya, Uchebnoe posobie dlya fakulteta povysheniya kvalifikatsii, LISI, L., 1985, 86 pp.

[2] Nefedov V. N., Osipova V. A., Kurs diskretnoi matematiki, Ucheb. posobie, Izd-vo MAI, M., 1992, 264 pp.

[3] Kulik B. A., Logicheskii analiz sistem na osnove algebraicheskogo podkhoda, Diss. na soiskanie uchenoi stepeni doktora fiz.-matem. nauk, Sankt-Peterburg, 2008

[4] Kulik B. A., Logicheskie osnovy zdravogo smysla, ed. D. A. Pospelov, Politekhnika, SPb., 1997, 131 pp.

[5] Gorbatov V. A., Teoriya chactichno-uporyadochennykh sistem, “Sovetskoe radio”, M., 1976, 336 pp. | MR | Zbl

[6] Smetanin Yu. M., “Ortogonalnyi bazis sillogistiki”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 155–166

[7] Zakrevskii A. D., “K formalizatsii polisillogistiki”, Logicheskii vyvod, Nauka, M., 1979, 300–309 | MR

[8] Lobanov V. I., Russkaya veroyatnostnaya logika, “Russkaya pravda”, M., 2009, 320 pp.

[9] Smetanin Yu. M., “Ortogonalnyi bazis sillogistiki, ili kakaya logika nuzhna ekonomistam”, Menedzhment: teoriya i praktika, 2009, no. 3–4, 25–42

[10] Smetanin Yu. M., “Sopostavlenie rasshirennoi algebry mnozhestv i algebry logiki s tochki zreniya problem polisillogistiki”, Menedzhment: teoriya i praktika, 2010, no. 3–4, 12–27

[11] Kuzichev A. S., Diagrammy Venna, Nauka, M., 1968, 253 pp.