On application of special multivariate splines of any degree in the numerical analysis
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 146-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give the basis and procedure of construction of special multivariate splines of any degree of Lagrange's type, named by $\lambda $-splines. They are under construction from multivariate interpolated algebraic polynomials of the fixed degree set on simplexes of special triangulation of a range of definition of initial function.
Mots-clés : interpolation, simplex
Keywords: approximation, multivariate spline, barycentric coordinate system.
@article{VUU_2010_4_a15,
     author = {V. I. Rodionov},
     title = {On application of special multivariate splines of any degree in the numerical analysis},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {146--153},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a15/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On application of special multivariate splines of any degree in the numerical analysis
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 146
EP  - 153
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a15/
LA  - ru
ID  - VUU_2010_4_a15
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On application of special multivariate splines of any degree in the numerical analysis
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 146-153
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a15/
%G ru
%F VUU_2010_4_a15
V. I. Rodionov. On application of special multivariate splines of any degree in the numerical analysis. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 146-153. http://geodesic.mathdoc.fr/item/VUU_2010_4_a15/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982, 384 pp. | MR | Zbl

[2] Rodionov V. I., “K voprosu o splain-approksimatsii funktsii neskolkikh peremennykh”, Vestnik Udmurtskogo universiteta. Matematika, 2007, no. 1, 121–126

[3] Rodionov V. I., “Ob odnom semeistve interpolyatsionnykh mnogochlenov neskolkikh peremennykh”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 2, 127–132

[4] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984, 428 pp. | MR

[5] Nicolaides R. A., “On a class of finite elements generated by Lagrange interpolation”, SIAM J. Numer. Anal., 9 (1972), 435–445 | DOI | MR | Zbl

[6] Nicolaides R. A., “On a class of finite elements generated by Lagrange interpolation. II”, SIAM J. Numer. Anal., 10 (1973), 182–189 | DOI | MR | Zbl