@article{VUU_2010_4_a12,
author = {S. R. Gallyamov and S. A. Mel'chukov},
title = {Percolation model of conductivity of two-phase lattice: theory and computer experiment},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {112--122},
year = {2010},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/}
}
TY - JOUR AU - S. R. Gallyamov AU - S. A. Mel'chukov TI - Percolation model of conductivity of two-phase lattice: theory and computer experiment JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 112 EP - 122 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/ LA - ru ID - VUU_2010_4_a12 ER -
%0 Journal Article %A S. R. Gallyamov %A S. A. Mel'chukov %T Percolation model of conductivity of two-phase lattice: theory and computer experiment %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 112-122 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/ %G ru %F VUU_2010_4_a12
S. R. Gallyamov; S. A. Mel'chukov. Percolation model of conductivity of two-phase lattice: theory and computer experiment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 112-122. http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/
[1] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, ch. 2, Nauka, M., 1967 | Zbl
[2] Efros A. L., Fizika i geometriya besporyadka, Bibliotechka “Kvant”, 19, Nauka, glav. red. fiz.-mat. lit., M., 1982, 176 pp. | MR
[3] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979, 126–128, 133–139, 159–165
[4] Gallyamov S. R., “Porog protekaniya prostoi kubicheskoi reshetki v zadache uzlov v modeli reshetki Bëte”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 109–115
[5] Gallyamov S. R., Melchukov S. A., “O neskeilenge veroyatnosti protekaniya prostoi kubicheskoi reshetki: teoriya i kompyuternyi eksperiment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 29–36
[6] Moskalëv P. V., “Analiz struktury perkolyatsionnogo klastera”, ZhTF, 79:6 (2009), 1–7
[7] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 13–24
[8] Sokolov I. M., “Razmernosti i drugie geometricheskie kriticheskie pokazateli v teorii protekaniya”, UFN, 150:2 (1985), 221–225
[9] Feder E., Fraktaly, Mir, M., 1991, 126–128 | MR
[10] Gallyamov S. R., Melchukov S. A., “O kriticheskikh indeksakh v trekhmernoi perkolyatsii v zadachakh uzlov i tverdykh sfer”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 2, 67–79
[11] Luthi B., Moran T. J., Pollina R. J., Phys. Chem. Solids, 31 (1970), 1741 | DOI
[12] Bennet H. S., Phys. Rev., 185 (1969), 801 | DOI
[13] Maxima, a Computer Algebra System, http://maxima.sourceforge.net
[14] Maxima 5.22.1 Manual, http://maxima.sourceforge.net/docs/manual/en/maxima_70.html
[15] Levinshtein M. E., Shur M. S., Shklovskii B. I., Efros A. L., “O svyazi mezhdu kriticheskimi indeksami teorii protekaniya”, ZhETF, 9 (1975), 386
[16] Zhuravlëv V. A. i dr., “Perkolyatsionnaya model dvukhfaznoi zony splavov”, Izvestiya Akademii nauk SSSR. Metally, 1982, no. 2, 131–133