Percolation model of conductivity of two-phase lattice: theory and computer experiment
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 112-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The conductivity of percolation system is studied (the system consists of conductive and non-conducting phases). The connection of conductivity with probability is determined using the conception of Shklovskii–de Gennes on the topological structure of infinite cluster. The dependence lattice conductivity is obtained in a wide range of modification of conductive phase concentration. The concordance of theory and computer experiment is shown. Also the concordance of scaling dependence and conductivity for square and simple cubical lattice is shown using the critical index from the consequence of hypothesis of Alexander–Orbah.
Keywords: conductivity, lattice, percolation.
@article{VUU_2010_4_a12,
     author = {S. R. Gallyamov and S. A. Mel'chukov},
     title = {Percolation model of conductivity of two-phase lattice: theory and computer experiment},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {112--122},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/}
}
TY  - JOUR
AU  - S. R. Gallyamov
AU  - S. A. Mel'chukov
TI  - Percolation model of conductivity of two-phase lattice: theory and computer experiment
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 112
EP  - 122
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/
LA  - ru
ID  - VUU_2010_4_a12
ER  - 
%0 Journal Article
%A S. R. Gallyamov
%A S. A. Mel'chukov
%T Percolation model of conductivity of two-phase lattice: theory and computer experiment
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 112-122
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/
%G ru
%F VUU_2010_4_a12
S. R. Gallyamov; S. A. Mel'chukov. Percolation model of conductivity of two-phase lattice: theory and computer experiment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 112-122. http://geodesic.mathdoc.fr/item/VUU_2010_4_a12/

[1] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, ch. 2, Nauka, M., 1967 | Zbl

[2] Efros A. L., Fizika i geometriya besporyadka, Bibliotechka “Kvant”, 19, Nauka, glav. red. fiz.-mat. lit., M., 1982, 176 pp. | MR

[3] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979, 126–128, 133–139, 159–165

[4] Gallyamov S. R., “Porog protekaniya prostoi kubicheskoi reshetki v zadache uzlov v modeli reshetki Bëte”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 109–115

[5] Gallyamov S. R., Melchukov S. A., “O neskeilenge veroyatnosti protekaniya prostoi kubicheskoi reshetki: teoriya i kompyuternyi eksperiment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 29–36

[6] Moskalëv P. V., “Analiz struktury perkolyatsionnogo klastera”, ZhTF, 79:6 (2009), 1–7

[7] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 13–24

[8] Sokolov I. M., “Razmernosti i drugie geometricheskie kriticheskie pokazateli v teorii protekaniya”, UFN, 150:2 (1985), 221–225

[9] Feder E., Fraktaly, Mir, M., 1991, 126–128 | MR

[10] Gallyamov S. R., Melchukov S. A., “O kriticheskikh indeksakh v trekhmernoi perkolyatsii v zadachakh uzlov i tverdykh sfer”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 2, 67–79

[11] Luthi B., Moran T. J., Pollina R. J., Phys. Chem. Solids, 31 (1970), 1741 | DOI

[12] Bennet H. S., Phys. Rev., 185 (1969), 801 | DOI

[13] Maxima, a Computer Algebra System, http://maxima.sourceforge.net

[14] Maxima 5.22.1 Manual, http://maxima.sourceforge.net/docs/manual/en/maxima_70.html

[15] Levinshtein M. E., Shur M. S., Shklovskii B. I., Efros A. L., “O svyazi mezhdu kriticheskimi indeksami teorii protekaniya”, ZhETF, 9 (1975), 386

[16] Zhuravlëv V. A. i dr., “Perkolyatsionnaya model dvukhfaznoi zony splavov”, Izvestiya Akademii nauk SSSR. Metally, 1982, no. 2, 131–133