Amplitude equations for three dimensional roll-type double-diffusive convection with an arbitrary cell width in the neighborhood of Hopf bifurcation points
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 13-24
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three dimensional roll-type double-diffusive convection in a horizontally infinite layer of an uncompressible liquid is considered in the neighborhood of Hopf bifurcation points. An A$\Psi$-system of amplitude equations for the variations of convective rolls amplitude is derived by multiple-scaled method. The cell width can be arbitrary, which is important for large Rayleigh numbers. It is noted that in 3D case an interaction of convection and horizontal vorticity field plays an essential role and can hardly be neglected. Different cases of the derived equations are discussed.
Mots-clés : double-diffusive convection; amplitude equation; multiple-scale method.
@article{VUU_2010_4_a1,
     author = {S. B. Kozitskiy},
     title = {Amplitude equations for three dimensional roll-type double-diffusive convection with an arbitrary cell width in the neighborhood of {Hopf} bifurcation points},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {13--24},
     year = {2010},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_4_a1/}
}
TY  - JOUR
AU  - S. B. Kozitskiy
TI  - Amplitude equations for three dimensional roll-type double-diffusive convection with an arbitrary cell width in the neighborhood of Hopf bifurcation points
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 13
EP  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_4_a1/
LA  - ru
ID  - VUU_2010_4_a1
ER  - 
%0 Journal Article
%A S. B. Kozitskiy
%T Amplitude equations for three dimensional roll-type double-diffusive convection with an arbitrary cell width in the neighborhood of Hopf bifurcation points
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 13-24
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2010_4_a1/
%G ru
%F VUU_2010_4_a1
S. B. Kozitskiy. Amplitude equations for three dimensional roll-type double-diffusive convection with an arbitrary cell width in the neighborhood of Hopf bifurcation points. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2010), pp. 13-24. http://geodesic.mathdoc.fr/item/VUU_2010_4_a1/

[1] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.

[2] Khappert G., Terner Dzh., “Konvektsiya, obuslovlennaya dvoinoi diffuziei”, Sovremennaya gidrodinamika. Uspekhi i problemy, Sb., Mir, M., 1984, 413–453

[3] Kozitskiy S. B., “Fine structure generation in double-diffusive system”, Phys. Rev. E, 72:5 (2005), 056309-1–056309-6 | DOI

[4] Kozitskii S. B., “Amplitudnye uravneniya dlya sistemy s termokhalinnoi konvektsiei”, PMTF, 41:2 (2000), 56–66 | MR

[5] Balmforth N. J., Biello J. A., “Double diffusive instability in a tall thin slot”, J. Fluid Mech., 375 (1998), 203–233 | DOI | MR | Zbl

[6] Kozitskii S. B., “Amplitudnye uravneniya dlya trekhmernoi bidiffuzionnoi konvektsii v okrestnosti tochek bifurkatsii Khopfa”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 46–60

[7] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988, 736 pp. | MR | Zbl

[8] Weiss N. O., “Convection in an imposed magnetic field. Part 1. The development of nonlinear convection”, J. Fluid Mech., 108 (1981), 247–272 | DOI | Zbl

[9] Naife A. Kh., Vvedenie v metody vozmuschenii, Mir, M., 1984, 535 pp. | MR

[10] Bretherton C. S., Spiegel E. A., “Intermittency through modulational instability”, Phys. Lett. A, 96 (1983), 152–156 | DOI

[11] Cox S. M., Matthews P. C., “Exponential time differencing for stiff systems”, J. Comput. Phys., 176 (2002), 430–455 | DOI | MR | Zbl

[12] Kozitskii S. B., “Amplitudnye uravneniya dlya 3D bidiffuzionnoi valikovoi konvektsii s lineinoi zavisimostyu vyazkosti ot temperatury”, Regulyarnaya i khaoticheskaya gidrodinamika. Prilozheniya k atmosfere i okeanu, Tez. dokl. Mezhdunar. konf., NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2010, 28–29