On existence of recurrent and almost periodic solutions to differential inclusion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 42-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are studied the conditions of existence of recurrent and almost periodic solutions to nonautonomous differential inclusion with a parameter that changes in a compact metric space. The corresponding results for ordinary differential inclusions are derived.
Keywords: differential inclusion, recurrent and almost periodic solutions, weakly invariant set, topological dynamical system.
@article{VUU_2010_3_a5,
     author = {E. A. Panasenko},
     title = {On existence of recurrent and almost periodic solutions to differential inclusion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {42--57},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a5/}
}
TY  - JOUR
AU  - E. A. Panasenko
TI  - On existence of recurrent and almost periodic solutions to differential inclusion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 42
EP  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_3_a5/
LA  - ru
ID  - VUU_2010_3_a5
ER  - 
%0 Journal Article
%A E. A. Panasenko
%T On existence of recurrent and almost periodic solutions to differential inclusion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 42-57
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2010_3_a5/
%G ru
%F VUU_2010_3_a5
E. A. Panasenko. On existence of recurrent and almost periodic solutions to differential inclusion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 42-57. http://geodesic.mathdoc.fr/item/VUU_2010_3_a5/

[1] Favard J., “Sur les equation differentielles a coefficients presque-periodiques”, Acta Math., 51 (1927), 31–81 | DOI | MR | Zbl

[2] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, GITTL, M., 1949, 550 pp.

[3] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., Dinamicheskie sistemy-1, Itogi nauki i tekhniki. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, Izd-vo VINITI AN SSSR, M., 1985, 244 pp. | MR

[4] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Trudy Matem. in-ta AN SSSR, 169, 1985, 194–252 | MR | Zbl

[5] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR

[6] Aubin J.-P., Viability Theory, Birkhauser, Boston, Basel, Berlin, 1991, 543 pp. | MR | Zbl

[7] Irisov A. E., Tonkov E. L., “Dostatochnye usloviya optimalnosti rekurrentnykh po Birkgofu dvizhenii differentsialnogo vklyucheniya”, Vestnik Udmurtskogo universiteta. Matematika, 2005, no. 1, 59–74

[8] Roxin E., “Stability in general control systems”, J. Different. Equat., 1:2 (1965), 115–150 | DOI | MR | Zbl

[9] Panasenko E. A., Tonkov E. L., “Invariantnye i ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Trudy Matem. in-ta im. V. A. Steklova, 262, 2008, 202–221 | MR | Zbl

[10] Panasenko E. A., Tonkov E. L., “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 185–201

[11] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd. Mosk. un-ta, M., 1978, 204 pp. | MR | Zbl

[12] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byulleten mekhaniko-matematicheskogo fakulteta MGU, 1941, no. 5, 1–52