Singularities' of Optimal-Time Function in One Class of Optimal-Time Control Problems Construction Algorithms
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 30-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Singular lines and nonsmooth singularities of cost function in one class of optimal-time problems are studied. Equations for their end points are written. Their relation with the geometry of the goal set is shown. Connection of the optimal-time problem and the first order PDE with boundary condition is ascertained. Examples of some problems' solving and graphs of solutions are given.
Keywords: optimal-time control problem, disperse line, pseudoverticle of the set.
@article{VUU_2010_3_a4,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Singularities' of {Optimal-Time} {Function} in {One} {Class} of {Optimal-Time} {Control} {Problems} {Construction} {Algorithms}},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {30--41},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a4/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Singularities' of Optimal-Time Function in One Class of Optimal-Time Control Problems Construction Algorithms
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 30
EP  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_3_a4/
LA  - ru
ID  - VUU_2010_3_a4
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Singularities' of Optimal-Time Function in One Class of Optimal-Time Control Problems Construction Algorithms
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 30-41
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2010_3_a4/
%G ru
%F VUU_2010_3_a4
A. A. Uspenskii; P. D. Lebedev. Singularities' of Optimal-Time Function in One Class of Optimal-Time Control Problems Construction Algorithms. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 30-41. http://geodesic.mathdoc.fr/item/VUU_2010_3_a4/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka, Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2003, 336 pp. | Zbl

[3] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp. | MR

[4] Uspenskii A. A., Lebedev P. D., “Analiticheskoe i chislennoe konstruirovanie funktsii optimalnogo rezultata dlya odnogo klassa zadach bystrodeistviya”, Prikladnaya matematika i informatika. Trudy fakulteta VMK MGU, 27, 2007, 65–79

[5] Uspenskii A. A., Lebedev P. D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl

[6] Uspenskii A. A., Lebedev P. D., Ushakov V. N., “Postroenie minimaksnogo resheniya uravnenii tipa eikonala”, Trudy Instituta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 182–191 | Zbl

[7] Uspenskii A. A., Lebedev P. D., “Algoritmy postroeniya funktsii optimalnogo rezultata v zadache s prostoi dinamikoi”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 2, 152–154

[8] Uspenskii A. A., Lebedev P. D., “Usloviya transversalnosti vetvei resheniya nelineinogo uravneniya v zadache bystrodeistviya s krugovoi indikatrisoi”, Trudy Instituta matematiki i mekhaniki UrO RAN, 14, no. 4, 2008, 82–99 | MR

[9] Uspenskii A. A., Lebedev P. D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 171–185

[10] Arnold V. I., Osobennosti kaustik i volnovykh frontov, FAZIS, M., 1996 | MR | Zbl

[11] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[12] Sedykh V. D., “On the topology of symmetry sets of smooth submanifolds in $\mathbb R^k$”, Singularity Theory and Its Applications, Advanced Studies in Pure Mathematics, 43, 2006, 401–419 | MR | Zbl

[13] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001, 238 pp.

[14] Rashevskii P. K., Kurs differentsialnoi geometrii, Editorial URSS, M., 2003, 432 pp.

[15] Anufriev I. E., Smirnov A. B., Smirnova E. N., MATLAB 7, BKhV-Peterburg, SPb., 2005, 1104 pp.