Domain decomposition for parallel adaptive finite element algorithm
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 141-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The decomposition method for adaptive FEM with refinement of a mesh which includes parallel algorithms is constructed: solutions of systems of the linear equations, a posteriori estimation of an error, local refinement of a mesh and dynamic balancing of computing loading. Their efficiency and structure of computing load is researched at performance on multicore computing systems.
Mots-clés : domain decomposition
Keywords: parallel calculations, adaptive mesh refinement, finite element method.
@article{VUU_2010_3_a14,
     author = {S. P. Kopysov and A. K. Novikov},
     title = {Domain decomposition for parallel adaptive finite element algorithm},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {141--154},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/}
}
TY  - JOUR
AU  - S. P. Kopysov
AU  - A. K. Novikov
TI  - Domain decomposition for parallel adaptive finite element algorithm
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 141
EP  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/
LA  - ru
ID  - VUU_2010_3_a14
ER  - 
%0 Journal Article
%A S. P. Kopysov
%A A. K. Novikov
%T Domain decomposition for parallel adaptive finite element algorithm
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 141-154
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/
%G ru
%F VUU_2010_3_a14
S. P. Kopysov; A. K. Novikov. Domain decomposition for parallel adaptive finite element algorithm. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 141-154. http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/

[1] E. Stein (ed.), Error-controlled Adaptive Finite Elements in Solid Mechanics, John Wiley Sons, 2002, 422 pp.

[2] Le Tallec P., “Domain decomposition methods in computational mechanics”, Computational Mechanics Advances, 1:2 (1993), 121–220 | MR

[3] Dongarra J., Peterson G., Tomov S., Allred J., Natoli V., Richie D., Exploring New Architectures in Accelerating CFD for Air Force Applications, Proceedings of the 2008 DoD HPCMP Users Group Conference: HPCMP-UGC'08 (July 14–17 2008), IEEE Computer Society, Washington, USA, 2008, 472–478

[4] Novikov A. N., Kopysov S. P., “Parallel element-by-element conjugate gradient method with decreased communications costs”, The International Summer School Iterative Methods and Matrix Computations (2–9 June 2002), eds. Gene H. Golub, Lev A. Krukier, Rostov-on-Don, 2002, 450–454

[5] Chen K., Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cambridge, 2005, 568 pp. | MR

[6] Dayde M.J̇., L'Excellent J. Y., Gould N. I. M., “Element-by-element preconditioners for large partially separable optimisation problems”, SIAM Journal of Scientific Computing, 18:6 (1997), 1767–1787 | DOI | MR | Zbl

[7] Balandin M. Yu., Shurina E. P., Metody resheniya SLAU bolshoi razmernosti, Izd-vo NGTU, Novosibirsk, 2000, 70 pp.

[8] Van der Vorst H. A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, 2003, 221 pp. | MR

[9] Kopysov S. P., Novikov A. K., Sagdeev Yu. A., “Parallelnye skhemy razryvnogo metoda Galerkina”, Trekhmernaya vizualizatsiya nauchnoi, tekhnicheskoi i sotsialnoi realnosti. Klasternye tekhnologii modelirovaniya, Sb. trudov konf., v. 1, UdGU, Izhevsk, 2009, 144–147

[10] Repin S. I., Frolov M. E., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Zhurnal vych. mat. i mat. fiziki, 42:12 (2002), 1774–1787 | MR | Zbl

[11] Verfurth R., A review of a posteriori error estimation and adaptive mesh refinement techniques, Wiley-Teubner, 1996, 127 pp. | Zbl

[12] Kopysov S. P., Novikov A. K., Ponomarev A. B., “O parallelnom postroenii nestrukturirovannykh setok”, Parallelnye vychislitelnye tekhnologii (PaVT'2007), Sb. trudov Mezhd. konf. (29 yanv.–2 fev. 2007), 2, Izd. YuUrGU, Chelyabinsk, 2007, 65–76

[13] Kruglyakova L. V., Neledova A. V., Tishkin V. F., Filatov A. Yu., “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Matem. modelirovanie, 10:3 (1998), 93–116 | MR | Zbl

[14] Rivara M. C., “Mesh refinement processes based on the generalized bisection of simplices”, SIAM Journal on Numerical Analysis, 21 (1984), 604–613 | DOI | MR | Zbl

[15] Kopysov S. P., Novikov A. K., “Analiz sposobov perestroeniya treugolnykh konechno-elementnykh setok”, Chislennye metody resheniya lineinykh i nelineinykh kraevykh zadach, Trudy Matem. tsentra im. N. I. Lobachevskogo, 20, Izd-vo Kazan. mat. ob-va, Kazan, 2003, 170–180 | MR

[16] Kopysov S. P., Novikov A. K., “Parallelnye algoritmy adaptivnogo perestroeniya i razdeleniya nestrukturirovannykh setok”, Matem. modelirovanie, 14:9 (2002), 91–96

[17] Kopysov S. P., Novikov A. K., Rychkov V. N., “Urovni i algoritmy dinamicheskoi balansirovki vychislitelnoi nagruzki protsessorov”, Sovremennye problemy matematicheskogo modelirovaniya, Sb. trudov XII Vseros. shkoly-seminara, Izd-vo Yuzhnogo federal. un-ta, Abrau-Dyurso, 2007, 136–165

[18] Oden D., Konechnye elementy v nelineinoi mekhanike sploshnykh sred, Mir, M., 1976, 465 pp.

[19] Kopysov S., Novikov A., “Parallel Adaptive Mesh Refinement with Load Balancing for Finite Element Method”, Lecture Notes in Computer Science, 2127, 2001, 266–267 | DOI

[20] Kopyssov S. P., Novikov A. K., “Parallel Adaptive Mesh Refinement with Load Balancing on Heterogeneous Cluster”, Parallel and Distributed Computing Practices, 5:4 (2002)

[21] Kopysov S. P., Metody dekompozitsii i parallelnye raspredelennye tekhnologii dlya adaptivnykh versii metoda konechnykh elementov, avtoref. dis. ... d-ra fiz.-mat. nauk: 05.13.18, Institut matem. model-niya RAN, M., 2007, 39 pp.

[22] Kopysov S. P., Novikov A. K., “Optimizatsiya vypolneniya MPI-prilozhenii na mnogoyadernykh mnogosoketovykh vychislitelnykh sistemakh”, Aktualnye problemy matematiki, mekhaniki, informatiki, Trudy konf. Ekaterinburg, IMM UrO RAN, 2009, 58–64