Keywords: parallel calculations, adaptive mesh refinement, finite element method.
@article{VUU_2010_3_a14,
author = {S. P. Kopysov and A. K. Novikov},
title = {Domain decomposition for parallel adaptive finite element algorithm},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {141--154},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/}
}
TY - JOUR AU - S. P. Kopysov AU - A. K. Novikov TI - Domain decomposition for parallel adaptive finite element algorithm JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 141 EP - 154 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/ LA - ru ID - VUU_2010_3_a14 ER -
%0 Journal Article %A S. P. Kopysov %A A. K. Novikov %T Domain decomposition for parallel adaptive finite element algorithm %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 141-154 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/ %G ru %F VUU_2010_3_a14
S. P. Kopysov; A. K. Novikov. Domain decomposition for parallel adaptive finite element algorithm. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 141-154. http://geodesic.mathdoc.fr/item/VUU_2010_3_a14/
[1] E. Stein (ed.), Error-controlled Adaptive Finite Elements in Solid Mechanics, John Wiley Sons, 2002, 422 pp.
[2] Le Tallec P., “Domain decomposition methods in computational mechanics”, Computational Mechanics Advances, 1:2 (1993), 121–220 | MR
[3] Dongarra J., Peterson G., Tomov S., Allred J., Natoli V., Richie D., Exploring New Architectures in Accelerating CFD for Air Force Applications, Proceedings of the 2008 DoD HPCMP Users Group Conference: HPCMP-UGC'08 (July 14–17 2008), IEEE Computer Society, Washington, USA, 2008, 472–478
[4] Novikov A. N., Kopysov S. P., “Parallel element-by-element conjugate gradient method with decreased communications costs”, The International Summer School Iterative Methods and Matrix Computations (2–9 June 2002), eds. Gene H. Golub, Lev A. Krukier, Rostov-on-Don, 2002, 450–454
[5] Chen K., Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cambridge, 2005, 568 pp. | MR
[6] Dayde M.J̇., L'Excellent J. Y., Gould N. I. M., “Element-by-element preconditioners for large partially separable optimisation problems”, SIAM Journal of Scientific Computing, 18:6 (1997), 1767–1787 | DOI | MR | Zbl
[7] Balandin M. Yu., Shurina E. P., Metody resheniya SLAU bolshoi razmernosti, Izd-vo NGTU, Novosibirsk, 2000, 70 pp.
[8] Van der Vorst H. A., Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, 2003, 221 pp. | MR
[9] Kopysov S. P., Novikov A. K., Sagdeev Yu. A., “Parallelnye skhemy razryvnogo metoda Galerkina”, Trekhmernaya vizualizatsiya nauchnoi, tekhnicheskoi i sotsialnoi realnosti. Klasternye tekhnologii modelirovaniya, Sb. trudov konf., v. 1, UdGU, Izhevsk, 2009, 144–147
[10] Repin S. I., Frolov M. E., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Zhurnal vych. mat. i mat. fiziki, 42:12 (2002), 1774–1787 | MR | Zbl
[11] Verfurth R., A review of a posteriori error estimation and adaptive mesh refinement techniques, Wiley-Teubner, 1996, 127 pp. | Zbl
[12] Kopysov S. P., Novikov A. K., Ponomarev A. B., “O parallelnom postroenii nestrukturirovannykh setok”, Parallelnye vychislitelnye tekhnologii (PaVT'2007), Sb. trudov Mezhd. konf. (29 yanv.–2 fev. 2007), 2, Izd. YuUrGU, Chelyabinsk, 2007, 65–76
[13] Kruglyakova L. V., Neledova A. V., Tishkin V. F., Filatov A. Yu., “Nestrukturirovannye adaptivnye setki dlya zadach matematicheskoi fiziki (obzor)”, Matem. modelirovanie, 10:3 (1998), 93–116 | MR | Zbl
[14] Rivara M. C., “Mesh refinement processes based on the generalized bisection of simplices”, SIAM Journal on Numerical Analysis, 21 (1984), 604–613 | DOI | MR | Zbl
[15] Kopysov S. P., Novikov A. K., “Analiz sposobov perestroeniya treugolnykh konechno-elementnykh setok”, Chislennye metody resheniya lineinykh i nelineinykh kraevykh zadach, Trudy Matem. tsentra im. N. I. Lobachevskogo, 20, Izd-vo Kazan. mat. ob-va, Kazan, 2003, 170–180 | MR
[16] Kopysov S. P., Novikov A. K., “Parallelnye algoritmy adaptivnogo perestroeniya i razdeleniya nestrukturirovannykh setok”, Matem. modelirovanie, 14:9 (2002), 91–96
[17] Kopysov S. P., Novikov A. K., Rychkov V. N., “Urovni i algoritmy dinamicheskoi balansirovki vychislitelnoi nagruzki protsessorov”, Sovremennye problemy matematicheskogo modelirovaniya, Sb. trudov XII Vseros. shkoly-seminara, Izd-vo Yuzhnogo federal. un-ta, Abrau-Dyurso, 2007, 136–165
[18] Oden D., Konechnye elementy v nelineinoi mekhanike sploshnykh sred, Mir, M., 1976, 465 pp.
[19] Kopysov S., Novikov A., “Parallel Adaptive Mesh Refinement with Load Balancing for Finite Element Method”, Lecture Notes in Computer Science, 2127, 2001, 266–267 | DOI
[20] Kopyssov S. P., Novikov A. K., “Parallel Adaptive Mesh Refinement with Load Balancing on Heterogeneous Cluster”, Parallel and Distributed Computing Practices, 5:4 (2002)
[21] Kopysov S. P., Metody dekompozitsii i parallelnye raspredelennye tekhnologii dlya adaptivnykh versii metoda konechnykh elementov, avtoref. dis. ... d-ra fiz.-mat. nauk: 05.13.18, Institut matem. model-niya RAN, M., 2007, 39 pp.
[22] Kopysov S. P., Novikov A. K., “Optimizatsiya vypolneniya MPI-prilozhenii na mnogoyadernykh mnogosoketovykh vychislitelnykh sistemakh”, Aktualnye problemy matematiki, mekhaniki, informatiki, Trudy konf. Ekaterinburg, IMM UrO RAN, 2009, 58–64