Computation of viscous drop dynamics with level set method
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 134-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the numerical simulation of viscous drop dynamics was studied by level set method for the incompressible Navier–Stokes equations. Solution procedure employs finite volume method on unstructured hexahedral grid elements. Some numerical results are presented and compared with other simulations.
Keywords: numerical simulations, level set method, free surface tension, Navier–Stokes equations.
Mots-clés : viscous liquid
@article{VUU_2010_3_a13,
     author = {L. E. Tonkov},
     title = {Computation of viscous drop dynamics with level set method},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {134--140},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a13/}
}
TY  - JOUR
AU  - L. E. Tonkov
TI  - Computation of viscous drop dynamics with level set method
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 134
EP  - 140
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_3_a13/
LA  - ru
ID  - VUU_2010_3_a13
ER  - 
%0 Journal Article
%A L. E. Tonkov
%T Computation of viscous drop dynamics with level set method
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 134-140
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2010_3_a13/
%G ru
%F VUU_2010_3_a13
L. E. Tonkov. Computation of viscous drop dynamics with level set method. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 134-140. http://geodesic.mathdoc.fr/item/VUU_2010_3_a13/

[1] Hirt C. W., Nichlos B. D., “Volume of Fluid (VOF) method for the dynamics of free boundaries”, J. Comp. Physics, 39:1 (1981), 201–225 | DOI | Zbl

[2] Osher S. J., Fedkiw R. P., Level Set methods and dynamic implict surfaces, Springer, 2003, 273 pp. | MR

[3] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp. | MR

[4] Brackbill J. U., Kothe D. B., Zemach C. A., “A continuum method for modelling surface tension”, J. Comp. Physics, 100:2 (1992), 335–354 | DOI | MR | Zbl

[5] Bird R. B., Stewart W. E., Lightfoot E. N., Transport phenomena, John Wiley Sons, 2002, 913 pp.

[6] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp. | MR

[7] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo In-ta matematiki, Novosibirsk, 2002, 345 pp.

[8] Van Leer B., “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme”, J. Comp. Physics, 32:4 (1977), 361–370

[9] Issa R. I., “Solution of the implicitly discretized fluiduid flow equations by operator-splitting”, J. Comp. Physics, 62:1 (1986), 40–65 | DOI | MR | Zbl

[10] Liang R., Satofuka N., “Numerical study on three-dimensional unsteady motion of droplets using level set method”, Computational Fluid Dynamics 98, Proc. 4th ECCOMAS conference, v. 2, John Wiley Sons, 1998, 421–425

[11] Francois M., Shyy W., “Computation of drop dynamics with the immerse boundary method. Part 1: numerical algorithm and buoyancy-induced effect”, Numerical Heat Transfer Part B: Fundamentals, 44:2 (2003), 101–118 | DOI

[12] Maikov I. L., Direktor L. B., “Chislennaya model dinamiki kapli vyazkoi zhidkosti”, Vychislitelnye metody i programmirovanie, 10 (2009), 148–157

[13] Francois M., Shyy W., “Computation of drop dynamics with the immerse boundary method. Part 1: drop impact and heat transfer”, Numerical Heat Transfer Part B: Fundamentals, 44:2 (2003), 119–143 | DOI

[14] Dai M., Schmidt D. P., “Numerical simulation of head-on droplet collision: Effect of viscosity on maximum deformation”, Phys. Fluids, 17:4 (2005), 041701, 4 pp. | DOI | Zbl