Controllability of linear degenerate difference-differential equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 120-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the initial problem for a control linear time varying system of difference-differential equations with an identically degenerate matrix coefficient of the derivative of the desired vector function in the main part. The sufficient conditions and the necessary and sufficient criterion of full controllability on some segment in the domain of definition are obtained for such a system. The analysis is based on the transformation of the main part to so-called “equivalent form” with separated “differential” and “algebraic” subsystems.
Keywords: differential algebraic equations, difference-differential equations, controllability.
@article{VUU_2010_3_a12,
     author = {A. A. Shcheglova and I. I. Matveeva},
     title = {Controllability of linear degenerate difference-differential equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {120--133},
     year = {2010},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/}
}
TY  - JOUR
AU  - A. A. Shcheglova
AU  - I. I. Matveeva
TI  - Controllability of linear degenerate difference-differential equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 120
EP  - 133
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/
LA  - ru
ID  - VUU_2010_3_a12
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%A I. I. Matveeva
%T Controllability of linear degenerate difference-differential equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 120-133
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/
%G ru
%F VUU_2010_3_a12
A. A. Shcheglova; I. I. Matveeva. Controllability of linear degenerate difference-differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 120-133. http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/

[1] Campbell S. L., “Comments on 2-D descriptor systems”, Automatica, 27:1 (1991), 189–192 | DOI | MR | Zbl

[2] Gorecki H. S., Fuska P., Grabowski S., et al., Analysis and synthesis of time delay systems, John Wiley Sons, New York, 1989 | Zbl

[3] Brayton R., “Small signal stability criterion for electrical networks containing lossless transmission lines”, IBM J. Research Development, 12 (1968), 431–440 | DOI | Zbl

[4] Fridman E., “Stability of linear descriptor systems with delay: a Lyapunov based approach”, J. of Mathematical Analisys and Application, 273:1 (2002), 24–44 | DOI | MR | Zbl

[5] Halanay A., Rasvan V., “Stability radii for some propagation models”, IMA J. Mathematics Control Information, 14 (1997), 95–107 | DOI | MR | Zbl

[6] Wei J., Song W., “Controllability of singular systems with control delay”, Automatica, 37:11 (2001), 1873–1877 | DOI | Zbl

[7] Xu S., Dooren P. V., Stefan R., et al., “Robust stability and stabilization for singular systems with state delay and parameter uncertainty”, IEEE Trans. Aut. Control, 47:7 (2002), 1122–1128 | DOI | MR

[8] Ji X., Su H., Chu J., “An LMI approach to robust H-infinity control for uncertain singular time-delay systems”, J. Contr. Appl., 4:4 (2006), 361–366 | DOI | MR | Zbl

[9] Li Q., Zhang Q., Wang J., “Non-fragile observer-based passive control for descriptor systems with time-delay”, J. Control Theory Appl., 7:3 (2009), 237–242 | DOI | MR | Zbl

[10] Yang F., Zhang Q., “Delay-dependent $H$-infinity control for linear descriptor systems with delay in state”, J. Contr. Appl., 3:1 (2005), 76–84 | DOI | MR

[11] Fridman E., Shaked U., “$H_\infty$-control of linear state-delay descriptor systems: an LMI approach”, Linear Algebra and its Applications, 351 (2002), 271–302 | DOI | MR | Zbl

[12] Scheglova A. A., “Preobrazovanie lineinoi algebro-differentsialnoi sistemy k ekvivalentnoi forme”, Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem, Trudy IX Chetaevskoi Mezhdunar. konf., 5, IDSTU SO RAN, Irkutsk, 2007, 298–307

[13] Scheglova A. A., “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomatika i telemekhanika, 2008, no. 10, 57–80