@article{VUU_2010_3_a12,
author = {A. A. Shcheglova and I. I. Matveeva},
title = {Controllability of linear degenerate difference-differential equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {120--133},
year = {2010},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/}
}
TY - JOUR AU - A. A. Shcheglova AU - I. I. Matveeva TI - Controllability of linear degenerate difference-differential equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 120 EP - 133 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/ LA - ru ID - VUU_2010_3_a12 ER -
%0 Journal Article %A A. A. Shcheglova %A I. I. Matveeva %T Controllability of linear degenerate difference-differential equations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 120-133 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/ %G ru %F VUU_2010_3_a12
A. A. Shcheglova; I. I. Matveeva. Controllability of linear degenerate difference-differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2010), pp. 120-133. http://geodesic.mathdoc.fr/item/VUU_2010_3_a12/
[1] Campbell S. L., “Comments on 2-D descriptor systems”, Automatica, 27:1 (1991), 189–192 | DOI | MR | Zbl
[2] Gorecki H. S., Fuska P., Grabowski S., et al., Analysis and synthesis of time delay systems, John Wiley Sons, New York, 1989 | Zbl
[3] Brayton R., “Small signal stability criterion for electrical networks containing lossless transmission lines”, IBM J. Research Development, 12 (1968), 431–440 | DOI | Zbl
[4] Fridman E., “Stability of linear descriptor systems with delay: a Lyapunov based approach”, J. of Mathematical Analisys and Application, 273:1 (2002), 24–44 | DOI | MR | Zbl
[5] Halanay A., Rasvan V., “Stability radii for some propagation models”, IMA J. Mathematics Control Information, 14 (1997), 95–107 | DOI | MR | Zbl
[6] Wei J., Song W., “Controllability of singular systems with control delay”, Automatica, 37:11 (2001), 1873–1877 | DOI | Zbl
[7] Xu S., Dooren P. V., Stefan R., et al., “Robust stability and stabilization for singular systems with state delay and parameter uncertainty”, IEEE Trans. Aut. Control, 47:7 (2002), 1122–1128 | DOI | MR
[8] Ji X., Su H., Chu J., “An LMI approach to robust H-infinity control for uncertain singular time-delay systems”, J. Contr. Appl., 4:4 (2006), 361–366 | DOI | MR | Zbl
[9] Li Q., Zhang Q., Wang J., “Non-fragile observer-based passive control for descriptor systems with time-delay”, J. Control Theory Appl., 7:3 (2009), 237–242 | DOI | MR | Zbl
[10] Yang F., Zhang Q., “Delay-dependent $H$-infinity control for linear descriptor systems with delay in state”, J. Contr. Appl., 3:1 (2005), 76–84 | DOI | MR
[11] Fridman E., Shaked U., “$H_\infty$-control of linear state-delay descriptor systems: an LMI approach”, Linear Algebra and its Applications, 351 (2002), 271–302 | DOI | MR | Zbl
[12] Scheglova A. A., “Preobrazovanie lineinoi algebro-differentsialnoi sistemy k ekvivalentnoi forme”, Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem, Trudy IX Chetaevskoi Mezhdunar. konf., 5, IDSTU SO RAN, Irkutsk, 2007, 298–307
[13] Scheglova A. A., “Upravlyaemost nelineinykh algebro-differentsialnykh sistem”, Avtomatika i telemekhanika, 2008, no. 10, 57–80