The nonlinear model of axisymmetric free-surface two-layered creeping flow
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 91-100
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the initial topography of the surface and interface between layers. Using the method of asymptotic expansions for the governing equations, we study a long-time evolution of the flow and reveal the relation between the surface and interface displacements. The obtained results are applied to calculate the profile of the crust-mantle interface beneath the large-scale lunar basin.
Keywords:
Stokes flow, multi-layered flow, long-wave approximation, nonlinear diffusion, ring structures.
@article{VUU_2010_2_a7,
author = {V. V. Pack},
title = {The nonlinear model of axisymmetric free-surface two-layered creeping flow},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {91--100},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/}
}
TY - JOUR AU - V. V. Pack TI - The nonlinear model of axisymmetric free-surface two-layered creeping flow JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 91 EP - 100 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/ LA - ru ID - VUU_2010_2_a7 ER -
V. V. Pack. The nonlinear model of axisymmetric free-surface two-layered creeping flow. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 91-100. http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/