The nonlinear model of axisymmetric free-surface two-layered creeping flow
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 91-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear model based on the long-wave approximation of the Navier–Stokes equations is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the initial topography of the surface and interface between layers. Using the method of asymptotic expansions for the governing equations, we study a long-time evolution of the flow and reveal the relation between the surface and interface displacements. The obtained results are applied to calculate the profile of the crust-mantle interface beneath the large-scale lunar basin.
Keywords: Stokes flow, multi-layered flow, long-wave approximation, nonlinear diffusion, ring structures.
@article{VUU_2010_2_a7,
     author = {V. V. Pack},
     title = {The nonlinear model of axisymmetric free-surface two-layered creeping flow},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {91--100},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/}
}
TY  - JOUR
AU  - V. V. Pack
TI  - The nonlinear model of axisymmetric free-surface two-layered creeping flow
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 91
EP  - 100
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/
LA  - ru
ID  - VUU_2010_2_a7
ER  - 
%0 Journal Article
%A V. V. Pack
%T The nonlinear model of axisymmetric free-surface two-layered creeping flow
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 91-100
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/
%G ru
%F VUU_2010_2_a7
V. V. Pack. The nonlinear model of axisymmetric free-surface two-layered creeping flow. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 91-100. http://geodesic.mathdoc.fr/item/VUU_2010_2_a7/

[1] Slezkin N. A., Dinamika vyazkoi neszhimaemoi zhidkosti, Gostekhteorizdat, M., 1955, 519 pp.

[2] Alekseenko S. V., Nakoryakov V. E., Pokusaev B. G., Volnovoe techenie plenok, VO Nauka, Novosibirsk, 1992, 256 pp.

[3] Eley R. R., Schwartz L. W., “Interaction of rheology, geometry, and process in coating flow”, J. Coat. Tech., 74:932 (2002), 43–53 | DOI | MR

[4] Mikhailov V. O., “Matematicheskaya model protsessa evolyutsii struktur, obrazuyuschikhsya v rezultate vertikalnykh dvizhenii”, Izv. AN SSSR. Fizika Zemli, 1983, no. 6, 3–18

[5] Merkt D., Pototsky A., Bestehorn M., “Long-wave theory of bounded two-layer films with a free liquid-liquid interface: Short- and long-time evolution”, Phys. Fluids, 17 (2005), 064104 | DOI | MR | Zbl

[6] Pak V. V., “Osesimmetricheskaya model koltsevoi struktury v dvukhsloinom techenii vyazkoi zhidkosti so svobodnoi poverkhnostyu”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 2009, no. 2, 63–74 | MR

[7] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976, 456 pp. | MR

[8] Belonosov V. S., Vishnevskii M. P., “Ob ustoichivosti statsionarnykh reshenii nelineinykh parabolicheskikh sistem”, Matem. sb., 104(146):4(12) (1977), 534–558 | MR

[9] Borisov V. G., “O parabolicheskikh kraevykh zadachakh s malym parametrom pri proizvodnykh po $t$”, Matem. sb., 131(173):3(11) (1986), 293–308 | Zbl

[10] Wieczorek M. A., Phillips R. J., “Lunar Multiring Basins and the Cratering Process”, Icarus, 139 (1999), 246–259 | DOI

[11] Pike R. J., Spudis P. D., “Basin-ring spacing on the Moon, Mercury, and Mars”, Earth, Moon, and Planets, 39 (1987), 129–194 | DOI

[12] Hikida H., Wieczorek M. A., “Crustal thickness of the Moon: New constraints from gravity inversions using polyhedral shape models”, Icarus, 192 (2007), 150–166 | DOI

[13] Terkot D., Shubert Dzh., Geodinamika. Geologicheskoe prilozhenie fiziki sploshnykh sred, v. 2, Mir, M., 1985, 360 pp.