On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 67-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional lattice points problems for simple cubic lattice and solid spheres in chaotic motion are considered. Additional (to two-exponential scaling) relations between indices are indicated: $2-\alpha-\gamma=\nu$ (or $\nu d-\gamma=\nu$) and $\beta=-2\alpha$. Numerical values of three-dimensional critical indices are defined: $\alpha=-2/11$, $\eta=0,$ $\beta=4/11$, $\nu=8/11$, $\gamma=16/11$ and $\delta=5$.
Keywords: percolation, critical exponent, lattice, solid sphere.
@article{VUU_2010_2_a5,
     author = {S. R. Gallyamov and S. A. Mel'chukov},
     title = {On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {67--80},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/}
}
TY  - JOUR
AU  - S. R. Gallyamov
AU  - S. A. Mel'chukov
TI  - On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 67
EP  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/
LA  - ru
ID  - VUU_2010_2_a5
ER  - 
%0 Journal Article
%A S. R. Gallyamov
%A S. A. Mel'chukov
%T On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 67-80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/
%G ru
%F VUU_2010_2_a5
S. R. Gallyamov; S. A. Mel'chukov. On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 67-80. http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/