On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 67-80
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three-dimensional lattice points problems for simple cubic lattice and solid spheres in chaotic motion are considered. Additional (to two-exponential scaling) relations between indices are indicated: $2-\alpha-\gamma=\nu$ (or $\nu d-\gamma=\nu$) and $\beta=-2\alpha$. Numerical values of three-dimensional critical indices are defined: $\alpha=-2/11$, $\eta=0,$ $\beta=4/11$, $\nu=8/11$, $\gamma=16/11$ and $\delta=5$.
Keywords: percolation, critical exponent, lattice, solid sphere.
@article{VUU_2010_2_a5,
     author = {S. R. Gallyamov and S. A. Mel'chukov},
     title = {On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {67--80},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/}
}
TY  - JOUR
AU  - S. R. Gallyamov
AU  - S. A. Mel'chukov
TI  - On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 67
EP  - 80
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/
LA  - ru
ID  - VUU_2010_2_a5
ER  - 
%0 Journal Article
%A S. R. Gallyamov
%A S. A. Mel'chukov
%T On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 67-80
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/
%G ru
%F VUU_2010_2_a5
S. R. Gallyamov; S. A. Mel'chukov. On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 67-80. http://geodesic.mathdoc.fr/item/VUU_2010_2_a5/

[1] Efros A. L., Fizika i geometriya besporyadka, Bibliotechka “Kvant”, 19, Nauka, Glav. Red. fiz. mat. lit., M., 1982, 176 pp. | MR

[2] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 13–24

[3] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1975 | MR

[4] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[5] Sokolov I. M., “Razmernosti i drugie geometricheskie kriticheskie pokazateli v teorii protekaniya”, UFN, 150:2 (1985), 221–225

[6] Feder E., Fraktaly, Mir, M., 1991, 126–128 | MR

[7] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979, 126–128; 133–139; 159–165

[8] Kadanoff L. P. et al., “Static Phenomena Near Critical Points: Theory and Experiment”, Rev. Mod. Phys., 39 (1967), 395–431 | DOI

[9] Wilson K. G., “Renormalization group and critical phenomena. 1. Renormalization group and Kadanoff scaling picture”, Phys. Rev. B, 4 (1971), 3174 | DOI | Zbl

[10] Gallyamov S. R., “Porog protekaniya prostoi kubicheskoi reshetki v zadache uzlov v modeli reshetki Bete”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 109–115

[11] Gallyamov S. R., Melchukov S. A., “O neskeilenge veroyatnosti protekaniya prostoi kubicheskoi reshetki: teoriya i kompyuternyi eksperiment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 29–36

[12] Levinshtein M. E., Shur M. S., Shklovskii B. I., Efros A. L., “O svyazi mezhdu kriticheskimi indeksami teorii protekaniya”, ZhETF, 69 (1975), 386 | MR

[13] Stauffer D., Aharony A., Introduction to percolation theory, Tailor Francis, London, 1992

[14] Gallyamov S. R., Melchukov S. A., “Ob odnom metode rascheta porogov protekaniya kvadratnoi i almaznoi reshetok v perkolyatsionnoi zadache uzlov”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 33–44

[15] Kamilov I. K., Murtaziev A. K., Aliev Kh. K., “Issledovanie fazovykh perekhodov i kriticheskikh yavlenii metodami Monte-Karlo”, UFN, 169 (1999), 773 | DOI

[16] Kamilov I. K., Aliev Kh. K., “Issledovanie kriticheskoi dinamiki magnitouporyadochennykh kristallov ultrazvukovymi metodami”, UFN, 168 (1998), 953 | DOI

[17] Parsonidzh N., Steili L., Besporyadok v kristallakh, Chast 1, Mir, M., 1982, 84 pp.

[18] Polukhin V. A.,Ukhov V. F., Dzugutov M. M., Kompyuternoe modelirovanie dinamiki i struktury zhidkikh metallov, Nauka, M., 1981, 34–36

[19] Kharkhardin A. N., Topchiev A. I., “Uravneniya dlya koordinatsionnogo chisla v neuporyadochennykh sistemakh”, Belgorodskii gosudarstvennyi tekhnologicheskii universitet im. V. G. Shukhova. Uspekhi sovremennogo estestvoznaniya, 2003, no. 9, 47

[20] Luthi B., Moran T. J., Pollina R. J., Phys. Chem. Solids, 31 (1970), 1741 | DOI

[21] Bennet H. S., Phys. Rev., 185 (1969), 801 | DOI