On family of interpolated polynomials of some variables
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 127-132
Voir la notice de l'article provenant de la source Math-Net.Ru
The one-parametrical family of quadratic interpolated polynomials of several variables is investigated. In a role of parameter the point of $n$-dimensional space acts. Questions of existence and uniqueness interpolated polynomials are investigated. For polynomials the obvious representation (in barycentric system of coordinates) is proved. It is shown that only for the unique parameter continuous docking of interpolated polynomials constructed on elements of a triangulation of a special type takes place. For interpolated polynomial appropriating the given parameter the obvious representation in the Cartesian system of coordinates is proved. Application of interpolation with the given parameter makes possible quadratic spline-approximation of functions of many variables (at the same time with approximation of a field of a gradient of this function).
Mots-clés :
interpolation, gradient, simplex
Keywords: approximation, multivariate spline, barycentric coordinate system.
Keywords: approximation, multivariate spline, barycentric coordinate system.
@article{VUU_2010_2_a11,
author = {V. I. Rodionov},
title = {On family of interpolated polynomials of some variables},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {127--132},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a11/}
}
TY - JOUR AU - V. I. Rodionov TI - On family of interpolated polynomials of some variables JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 127 EP - 132 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2010_2_a11/ LA - ru ID - VUU_2010_2_a11 ER -
V. I. Rodionov. On family of interpolated polynomials of some variables. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 127-132. http://geodesic.mathdoc.fr/item/VUU_2010_2_a11/