On family of interpolated polynomials of some variables
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 127-132
Cet article a éte moissonné depuis la source Math-Net.Ru
The one-parametrical family of quadratic interpolated polynomials of several variables is investigated. In a role of parameter the point of $n$-dimensional space acts. Questions of existence and uniqueness interpolated polynomials are investigated. For polynomials the obvious representation (in barycentric system of coordinates) is proved. It is shown that only for the unique parameter continuous docking of interpolated polynomials constructed on elements of a triangulation of a special type takes place. For interpolated polynomial appropriating the given parameter the obvious representation in the Cartesian system of coordinates is proved. Application of interpolation with the given parameter makes possible quadratic spline-approximation of functions of many variables (at the same time with approximation of a field of a gradient of this function).
Mots-clés :
interpolation, gradient, simplex
Keywords: approximation, multivariate spline, barycentric coordinate system.
Keywords: approximation, multivariate spline, barycentric coordinate system.
@article{VUU_2010_2_a11,
author = {V. I. Rodionov},
title = {On family of interpolated polynomials of some variables},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {127--132},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a11/}
}
V. I. Rodionov. On family of interpolated polynomials of some variables. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 127-132. http://geodesic.mathdoc.fr/item/VUU_2010_2_a11/
[1] Demyshev A. S., Rodionov V. I., “Ob ekvivalentnom opredelenii nepreryvnoi differentsiruemosti”, Izvestiya Instituta matematiki i informatiki. UdGU. Izhevsk, 2006, no. 2(36), 39–42
[2] Rodionov V. I., “K voprosu o splain-approksimatsii funktsii neskolkikh peremennykh”, Vestnik Udmurtskogo universiteta. Matematika, 2007, no. 1, 121–126