Mots-clés : route to chaos.
@article{VUU_2010_2_a10,
author = {A. Yu. Perevarukha},
title = {Transition to robust chaotic mode as a~result of single bifurcation in the new model of population dynamic},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {117--126},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/}
}
TY - JOUR AU - A. Yu. Perevarukha TI - Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 117 EP - 126 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/ LA - ru ID - VUU_2010_2_a10 ER -
%0 Journal Article %A A. Yu. Perevarukha %T Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 117-126 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/ %G ru %F VUU_2010_2_a10
A. Yu. Perevarukha. Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 117-126. http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/
[1] Menshutkin V. V., Kazanskii A. A., “Matematicheskoe modelirovanie soobschestv ryb na EVM”, Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem: Cb., Gidrometioizdat, L., 1981, 251–256
[2] Feigenbaum M., “Universalnost v povedenii nelineinykh sistem”, Uspekhi fizicheskikh nauk, 141:2 (1983), 343–374 | DOI
[3] Li T., Yorke J., “Period three implies chaos”, Amer. Math. Monthly, 82:10 (1975), 985–990 | DOI | MR
[4] Kolesov A. Yu., Rozov N. Kh., “K voprosu ob opredelenii khaosa”, Uspekhi matematicheskikh nauk, 64:4 (2009), 26–170 | DOI | MR
[5] Zhivotovskii L. A., Khramtsov V. V., “Model dinamiki chislennosti gorbushi Oncorhynchus gorbusha”, Voprosy ikhtiologii, 36:3 (1996), 369–385
[6] Berryman A., Milstein J., “Are ecological systems chaotic and if not, why not?”, Trends in Ecology and Evolution, 4:1 (1989), 26–28 | DOI
[7] Ricker W., “Stock and recruitment”, Journal Fisheries research board of Canada, 11:5 (1954), 559–623 | DOI
[8] Sharkovskii A. N., “Sosuschestvovanie tsiklov u nepreryvnogo preobrazovaniya pryamoi v sebya”, Ukrainskii matematicheskii zhurnal, 26:1 (1964), 61–71
[9] Grebogi C., Ott E., Yorke J., “Chaos, strange attractors and fractal basin boundaries in nonlinear dynamics”, Science, 238:4827 (1987), 632–638 | DOI | MR | Zbl
[10] Grebogi C., Ott E., Yorke J., “Chaotic attractors in crisis”, Physical Review Letters, 48:22 (1982), 1507–1510 | DOI | MR
[11] Mun F., Khaoticheskie kolebaniya, Mir, M., 1990, 312 pp. | MR
[12] Sharkovskii A. N., Kolyada S. F., Sivek A. G, Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1989, 216 pp. | MR
[13] Hirsch E., Huberman B., Scalapino J., “Theory of intermittency”, Physical Review A, 25:1 (1982), 519–532 | DOI | MR
[14] Perevaryukha A. Yu., “Tsiklicheskie kolebaniya i etapnost razvitiya v novykh modelyakh dinamiki populyatsii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 116–125
[15] Ekologicheskie sistemy. Adaptivnaya otsenka i upravlenie, ed. K. Kholing, Mir, M., 1981, 397 pp.
[16] Geraskin P. P., Metallov G. F., Perevaryukha Yu. N., Aksenov V. P., Dubovskaya A. V., “Fiziologicheskie i populyatsionno-geneticheskie issledovaniya kaspiiskikh ryb”, Rybnoe khozyaistvo, 2007, no. 3, 66–68
[17] Senichenkov Yu. B., Chislennoe modelirovanie gibridnykh sistem, Izd-vo Politekhn. un-ta, SPb., 2004, 206 pp.
[18] Magnitskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 2004, 320 pp.
[19] Paar V., Pavin N., “Sensitive dependence of lifetimes of chaotic transient on numerical accuracy for a model with dry friction and frequency dependent driving amplitude”, Modern Physics Letters B, 10:4–5 (1996), 153–159 | DOI
[20] MacDonald S., Grebogi C., Ott E., Yorke J., “Fractal basin boundaries”, Physica D, 17:2 (1985), 125–153 | DOI | MR