Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 117-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Article considers arising of chaotic attractor for notunimodal one-dimensional map, which is a model of pupulation dynamics. Chaotic mode, which is not transient behavior spring up without cascade of bifurcation. Change in behaviour of the map appears as a consequence of backward tangent bifurcation. In the biological view effect is interpreted by sudden inclusion of mortality rate for generation on appointed stage. The new model describes the wave-like dependency of the stock and recruitment existed for real fish population.
Keywords: nonlinear models of population dynamics
Mots-clés : route to chaos.
@article{VUU_2010_2_a10,
     author = {A. Yu. Perevarukha},
     title = {Transition to robust chaotic mode as a~result of single bifurcation in the new model of population dynamic},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {117--126},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/}
}
TY  - JOUR
AU  - A. Yu. Perevarukha
TI  - Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 117
EP  - 126
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/
LA  - ru
ID  - VUU_2010_2_a10
ER  - 
%0 Journal Article
%A A. Yu. Perevarukha
%T Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 117-126
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/
%G ru
%F VUU_2010_2_a10
A. Yu. Perevarukha. Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 117-126. http://geodesic.mathdoc.fr/item/VUU_2010_2_a10/

[1] Menshutkin V. V., Kazanskii A. A., “Matematicheskoe modelirovanie soobschestv ryb na EVM”, Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem: Cb., Gidrometioizdat, L., 1981, 251–256

[2] Feigenbaum M., “Universalnost v povedenii nelineinykh sistem”, Uspekhi fizicheskikh nauk, 141:2 (1983), 343–374 | DOI

[3] Li T., Yorke J., “Period three implies chaos”, Amer. Math. Monthly, 82:10 (1975), 985–990 | DOI | MR

[4] Kolesov A. Yu., Rozov N. Kh., “K voprosu ob opredelenii khaosa”, Uspekhi matematicheskikh nauk, 64:4 (2009), 26–170 | DOI | MR

[5] Zhivotovskii L. A., Khramtsov V. V., “Model dinamiki chislennosti gorbushi Oncorhynchus gorbusha”, Voprosy ikhtiologii, 36:3 (1996), 369–385

[6] Berryman A., Milstein J., “Are ecological systems chaotic and if not, why not?”, Trends in Ecology and Evolution, 4:1 (1989), 26–28 | DOI

[7] Ricker W., “Stock and recruitment”, Journal Fisheries research board of Canada, 11:5 (1954), 559–623 | DOI

[8] Sharkovskii A. N., “Sosuschestvovanie tsiklov u nepreryvnogo preobrazovaniya pryamoi v sebya”, Ukrainskii matematicheskii zhurnal, 26:1 (1964), 61–71

[9] Grebogi C., Ott E., Yorke J., “Chaos, strange attractors and fractal basin boundaries in nonlinear dynamics”, Science, 238:4827 (1987), 632–638 | DOI | MR | Zbl

[10] Grebogi C., Ott E., Yorke J., “Chaotic attractors in crisis”, Physical Review Letters, 48:22 (1982), 1507–1510 | DOI | MR

[11] Mun F., Khaoticheskie kolebaniya, Mir, M., 1990, 312 pp. | MR

[12] Sharkovskii A. N., Kolyada S. F., Sivek A. G, Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Naukova dumka, Kiev, 1989, 216 pp. | MR

[13] Hirsch E., Huberman B., Scalapino J., “Theory of intermittency”, Physical Review A, 25:1 (1982), 519–532 | DOI | MR

[14] Perevaryukha A. Yu., “Tsiklicheskie kolebaniya i etapnost razvitiya v novykh modelyakh dinamiki populyatsii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 116–125

[15] Ekologicheskie sistemy. Adaptivnaya otsenka i upravlenie, ed. K. Kholing, Mir, M., 1981, 397 pp.

[16] Geraskin P. P., Metallov G. F., Perevaryukha Yu. N., Aksenov V. P., Dubovskaya A. V., “Fiziologicheskie i populyatsionno-geneticheskie issledovaniya kaspiiskikh ryb”, Rybnoe khozyaistvo, 2007, no. 3, 66–68

[17] Senichenkov Yu. B., Chislennoe modelirovanie gibridnykh sistem, Izd-vo Politekhn. un-ta, SPb., 2004, 206 pp.

[18] Magnitskii N. A., Sidorov S. V., Novye metody khaoticheskoi dinamiki, Editorial URSS, M., 2004, 320 pp.

[19] Paar V., Pavin N., “Sensitive dependence of lifetimes of chaotic transient on numerical accuracy for a model with dry friction and frequency dependent driving amplitude”, Modern Physics Letters B, 10:4–5 (1996), 153–159 | DOI

[20] MacDonald S., Grebogi C., Ott E., Yorke J., “Fractal basin boundaries”, Physica D, 17:2 (1985), 125–153 | DOI | MR