Analytic classification of singularities in the generalized Kowalevski case
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 19-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the problem of motion of the Kowalevski top on two constant fields (the A. G. Reyman–M. A. Semenov-Tian-Shansky case) the type of all critical points of the momentum map is calculated.
Keywords: integrable Hamiltonian system, momentum map, bifurcation diagram, type of non-degenerate singularity.
@article{VUU_2010_2_a1,
     author = {P. E. Ryabov and M. P. Kharlamov},
     title = {Analytic classification of singularities in the generalized {Kowalevski} case},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {19--28},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/}
}
TY  - JOUR
AU  - P. E. Ryabov
AU  - M. P. Kharlamov
TI  - Analytic classification of singularities in the generalized Kowalevski case
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 19
EP  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/
LA  - ru
ID  - VUU_2010_2_a1
ER  - 
%0 Journal Article
%A P. E. Ryabov
%A M. P. Kharlamov
%T Analytic classification of singularities in the generalized Kowalevski case
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 19-28
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/
%G ru
%F VUU_2010_2_a1
P. E. Ryabov; M. P. Kharlamov. Analytic classification of singularities in the generalized Kowalevski case. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 19-28. http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/

[1] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR

[2] Kharlamov M. P., “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, Mekhanika tverdogo tela, 2004, no. 34, 47–58 | MR

[3] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Commun., 13:3 (1986), 169–172 | DOI | MR | Zbl

[4] Reyman A. G., Semenov-Tian-Shansky M. A., “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett. Math. Phys., 14:1 (1987), 55–61 | DOI | MR | Zbl

[5] Kharlamov M. P., “Oblasti suschestvovaniya kriticheskikh dvizhenii obobschennogo volchka Kovalevskoi i bifurkatsionnye diagrammy”, Mekhanika tverdogo tela, 2006, no. 36, 13–22 | MR

[6] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi case”, Regul. Chaotic Dyn., 5:4 (2000), 437–458 | DOI | MR

[7] Kharlamov M. P., Savushkin A. Yu., “Razdelenie peremennykh i integralnye mnogoobraziya v odnoi chastnoi zadache o dvizhenii obobschennogo volchka Kovalevskoi”, Ukr. mat. vestn., 1:4 (2004), 564–582 | MR

[8] Kharlamov M. P., “Separation of variables in the generalized 4th Appelrot class. II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR | Zbl

[9] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd-vo RKhD, Izhevsk, 1999 | MR | Zbl

[10] Kharlamov M. P., Zotev D. B., “Non-degenerate energy surfaces of rigid body in two constant fields”, Regul. Chaotic Dyn., 10:1 (2005), 15–19 | DOI | MR | Zbl

[11] Kharlamov M. P., “Osobye periodicheskie resheniya obobschennogo sluchaya Delone”, Mekhanika tverdogo tela, 36 (2006), 23–33 | MR

[12] Kharlamov M. P., “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, Mekhanika tverdogo tela, 32 (2002), 32–38 | MR | Zbl