@article{VUU_2010_2_a1,
author = {P. E. Ryabov and M. P. Kharlamov},
title = {Analytic classification of singularities in the generalized {Kowalevski} case},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {19--28},
year = {2010},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/}
}
TY - JOUR AU - P. E. Ryabov AU - M. P. Kharlamov TI - Analytic classification of singularities in the generalized Kowalevski case JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 19 EP - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/ LA - ru ID - VUU_2010_2_a1 ER -
%0 Journal Article %A P. E. Ryabov %A M. P. Kharlamov %T Analytic classification of singularities in the generalized Kowalevski case %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 19-28 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/ %G ru %F VUU_2010_2_a1
P. E. Ryabov; M. P. Kharlamov. Analytic classification of singularities in the generalized Kowalevski case. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 19-28. http://geodesic.mathdoc.fr/item/VUU_2010_2_a1/
[1] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na algebrakh Li, voznikayuschie v zadachakh matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | MR
[2] Kharlamov M. P., “Kriticheskoe mnozhestvo i bifurkatsionnaya diagramma zadachi o dvizhenii volchka Kovalevskoi v dvoinom pole”, Mekhanika tverdogo tela, 2004, no. 34, 47–58 | MR
[3] Yehia H. M., “New integrable cases in the dynamics of rigid bodies”, Mech. Res. Commun., 13:3 (1986), 169–172 | DOI | MR | Zbl
[4] Reyman A. G., Semenov-Tian-Shansky M. A., “Lax representation with a spectral parameter for the Kowalewski top and its generalizations”, Lett. Math. Phys., 14:1 (1987), 55–61 | DOI | MR | Zbl
[5] Kharlamov M. P., “Oblasti suschestvovaniya kriticheskikh dvizhenii obobschennogo volchka Kovalevskoi i bifurkatsionnye diagrammy”, Mekhanika tverdogo tela, 2006, no. 36, 13–22 | MR
[6] Zotev D. B., “Fomenko–Zieschang invariant in the Bogoyavlenskyi case”, Regul. Chaotic Dyn., 5:4 (2000), 437–458 | DOI | MR
[7] Kharlamov M. P., Savushkin A. Yu., “Razdelenie peremennykh i integralnye mnogoobraziya v odnoi chastnoi zadache o dvizhenii obobschennogo volchka Kovalevskoi”, Ukr. mat. vestn., 1:4 (2004), 564–582 | MR
[8] Kharlamov M. P., “Separation of variables in the generalized 4th Appelrot class. II. Real solutions”, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR | Zbl
[9] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd-vo RKhD, Izhevsk, 1999 | MR | Zbl
[10] Kharlamov M. P., Zotev D. B., “Non-degenerate energy surfaces of rigid body in two constant fields”, Regul. Chaotic Dyn., 10:1 (2005), 15–19 | DOI | MR | Zbl
[11] Kharlamov M. P., “Osobye periodicheskie resheniya obobschennogo sluchaya Delone”, Mekhanika tverdogo tela, 36 (2006), 23–33 | MR
[12] Kharlamov M. P., “Odin klass reshenii s dvumya invariantnymi sootnosheniyami zadachi o dvizhenii volchka Kovalevskoi v dvoinom postoyannom pole”, Mekhanika tverdogo tela, 32 (2002), 32–38 | MR | Zbl