On solvability of impulse systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In parametrical family of subspaces of space of regulated functions the concept of the adjoint integral (in everyone subspace own integral is applied) is defined. In subspace, representing their crossing, the concept of the adjoint integral also is defined. This subspace includes the space of functions of the bounded variation. In any subspace on the basis of the adjoint integral the concept of the generalized regulated function and its adjoint generalized derivative is defined. Solvability of linear impulse systems in terms of adjoint generalized functions is proved.
Keywords: regulated function
Mots-clés : distribution, impulse equation.
@article{VUU_2010_2_a0,
     author = {V. I. Rodionov},
     title = {On solvability of impulse systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--18},
     year = {2010},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_2_a0/}
}
TY  - JOUR
AU  - V. I. Rodionov
TI  - On solvability of impulse systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 3
EP  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_2_a0/
LA  - ru
ID  - VUU_2010_2_a0
ER  - 
%0 Journal Article
%A V. I. Rodionov
%T On solvability of impulse systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 3-18
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2010_2_a0/
%G ru
%F VUU_2010_2_a0
V. I. Rodionov. On solvability of impulse systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2010), pp. 3-18. http://geodesic.mathdoc.fr/item/VUU_2010_2_a0/

[1] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza: ucheb. dlya vuzov, 5-e izd., Nauka, M., 1981, 544 pp. | MR

[2] Rodionov V. I., “O prostranstve regulyarno differentsiruemykh funktsii”, Izvestiya Instituta matematiki i informatiki. UdGU. Izhevsk, 2004, no. 1(29), 3–32

[3] Rodionov V. I., “Prisoedinennyi integral Rimana–Stiltesa v algebre preryvistykh funktsii”, Izvestiya Instituta matematiki i informatiki. UdGU. Izhevsk, 2005, no. 1(31), 3–78

[4] Rodionov V.I., “O silnykh i slabykh operatorakh v prostranstve preryvistykh funktsii”, Izvestiya Instituta matematiki i informatiki. UdGU. Izhevsk, 2006, no. 1 (35), 3–32 | MR

[5] Rodionov V. I., “Prisoedinennyi integral Rimana–Stiltesa”, Izvestiya vuzov. Matematika, 2007, no. 2(537), 79–82 | MR | Zbl

[6] Rodionov V. I., “The adjoint Riemann–Stieltjes integral”, Russian Mathematics (Iz. VUZ), 51:2 (2007), 75–79 | MR | Zbl

[7] Rodionov V. I., “Ob odnom semeistve podprostranstv prostranstva preryvistykh funktsii”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 7–24

[8] Melnikov O. V., Remeslennikov V. N., Romankov V. A. i dr., Obschaya algebra, v. 1, eds. L. A. Skornyakova, Nauka, M., 1990, 592 pp.

[9] Van der Varden B. L., Algebra, Nauka, M., 1976, 648 pp. | MR

[10] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 448 pp. | MR

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974, 480 pp. | MR

[12] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: Modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[13] Samoilenko A. M., Perestyuk N. A., Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shk., Kiev, 1987, 288 pp.