Solving of quasilinear boundary value problems for functional differential equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 66-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions of resolvability of nonlinear boundary value problems for some classes of functional differential equations are presented. These conditions have been obtained on the basis of reduction of original problem to the equation with a monotone operator.
Keywords: differential equation, boundary value problem, monotone operator, solving, Green function.
@article{VUU_2010_1_a5,
     author = {A. S. Larionov},
     title = {Solving of quasilinear boundary value problems for functional differential equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {66--72},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_1_a5/}
}
TY  - JOUR
AU  - A. S. Larionov
TI  - Solving of quasilinear boundary value problems for functional differential equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 66
EP  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_1_a5/
LA  - ru
ID  - VUU_2010_1_a5
ER  - 
%0 Journal Article
%A A. S. Larionov
%T Solving of quasilinear boundary value problems for functional differential equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 66-72
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2010_1_a5/
%G ru
%F VUU_2010_1_a5
A. S. Larionov. Solving of quasilinear boundary value problems for functional differential equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 66-72. http://geodesic.mathdoc.fr/item/VUU_2010_1_a5/

[1] Vasilev N. I., Klokov Yu. A., Osnovy teorii kraevykh zadach dlya obyknovennykh differentsialnykh uravnenii, Zinatne, Riga, 1978 | MR | Zbl

[2] Kiguradze I. T., Nekotorye singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii, Izd-vo Tbil. un-ta, Tbilisi, 1975 | MR

[3] Scwabik S., Tvrdy M., Veivoda O., Differential and integral equations. Boundary value problems and adjoints, Academia, Praha, 1979 | MR

[4] Conti R., “Recent trends in the theory of boundary value problems for ordinary differential equations”, Boll. Unione Mat., 22 (1967), 135–178 | MR | Zbl

[5] Lakshmikantham V., “The present state of the method of upper and lower solutions”, Trends in theory and practice of nonlinear differential equations, Proceedings of the International Conference, New Jork, 1983, 285–299 | MR

[6] Azbelev N. V., Rakhmatullina L. F., “K voprosu o funktsionalno-differentsialnykh neravenstvakh i monotonnykh operatorakh”, Funkts.-differents. uravneniya: Sb., Izd-vo Perm. politekhn. in-ta, Perm, 1986, 3–9 | MR

[7] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR | Zbl

[8] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Elementy sovremennoi teorii funktsionalno-differentsialnykh uravnenii. Metody i prilozheniya, In-t kompyutern. issledovanii, Izhevsk, M., 2002

[9] Domoshnitskii A. I., “O spravedlivosti teoremy Chaplygina dlya uravnenii neitralnogo tipa”, Kraevye zadachi: Cb., Izd-vo Perm. politekhn. in-ta, Perm, 1981, 121–125

[10] Labovskii S. M., “Ob odnom differentsialnom neravenstve dlya uravneniya s funktsionalnym argumentom”, Trudy Moskovsk. in-ta khim. mashinostr., 53, 1974, 24–27