Dirichlet problem for holomorphic functions in spaces described by modulus of continuity
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 58-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study and solve the Dirichlet problem for holomorphic functions in spaces, described by modulus of continuity with predefined conditions.
Keywords: Dirichlet problem, holomorphic functions, modulus of continuity.
@article{VUU_2010_1_a4,
     author = {A. S. Ilchukov and A. Yu. Timofeev},
     title = {Dirichlet problem for holomorphic functions in spaces described by modulus of continuity},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {58--65},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_1_a4/}
}
TY  - JOUR
AU  - A. S. Ilchukov
AU  - A. Yu. Timofeev
TI  - Dirichlet problem for holomorphic functions in spaces described by modulus of continuity
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 58
EP  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_1_a4/
LA  - ru
ID  - VUU_2010_1_a4
ER  - 
%0 Journal Article
%A A. S. Ilchukov
%A A. Yu. Timofeev
%T Dirichlet problem for holomorphic functions in spaces described by modulus of continuity
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 58-65
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2010_1_a4/
%G ru
%F VUU_2010_1_a4
A. S. Ilchukov; A. Yu. Timofeev. Dirichlet problem for holomorphic functions in spaces described by modulus of continuity. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 58-65. http://geodesic.mathdoc.fr/item/VUU_2010_1_a4/

[1] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., 1950, 338 pp.

[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 630 pp. | MR

[3] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977, 424 pp. | MR

[4] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Mikhlin S. G., Rakovschik L. S., Stetsenko V. Ya., Integralnye uravneniya, Nauka, M., 1968, 448 pp.

[5] Tutschke W., Vorlesungen über partielle Differentialgleichungen. Klassische, funktionalanalytische und komplexe Methoden, Teubner-Texte zur Mathematik, Leipzig, 1978, 193 pp. | MR | Zbl

[6] Raissig M., Timofeev A. Yu., “Ob ekvivalentnosti funktsionalnykh prostranstv v granichnoi zadache Dirikhle dlya golomorfnykh funktsii”, Poet, uchenyi, pedagog, Materialy Vseros. konf., posvyasch. N. A. Frolovu, SGU, Syktyvkar, 2009, 153–155

[7] Babaev A. A., Salaev V. V., “Ob odnom analoge teoremy Plemelya–Privalova v sluchae negladkikh krivykh i ee prilozheniya”, Doklady AN SSSR, 161 (1965), 267–269 | MR

[8] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980, 416 pp. | MR

[9] Michlin S. G., Prossdorf S., Singulare Integraloperatoren, Akademie-Verlag, Berlin, 1980, 514 pp. | MR | Zbl

[10] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1969, 240 pp. | MR

[11] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl