@article{VUU_2010_1_a3,
author = {E. E. Ivanko},
title = {Sufficient conditions of the stability of optimal route in the {Travelling} {Salesman} {Problem} in cases of a~single vertex addition or substraction},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {48--57},
year = {2010},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_1_a3/}
}
TY - JOUR AU - E. E. Ivanko TI - Sufficient conditions of the stability of optimal route in the Travelling Salesman Problem in cases of a single vertex addition or substraction JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2010 SP - 48 EP - 57 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2010_1_a3/ LA - ru ID - VUU_2010_1_a3 ER -
%0 Journal Article %A E. E. Ivanko %T Sufficient conditions of the stability of optimal route in the Travelling Salesman Problem in cases of a single vertex addition or substraction %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2010 %P 48-57 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2010_1_a3/ %G ru %F VUU_2010_1_a3
E. E. Ivanko. Sufficient conditions of the stability of optimal route in the Travelling Salesman Problem in cases of a single vertex addition or substraction. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 48-57. http://geodesic.mathdoc.fr/item/VUU_2010_1_a3/
[1] Gutin G., Punnen A. P., The Travelling Salesman Problem and Its Variations, Kluwer Academic Publishers, Dordrecht, 2007, 830 pp. | MR
[2] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, Regulyarnaya i khaoticheskaya dinamika, Moskva, Izhevsk, 2008, 238 pp.
[3] Avner P. et al., “A Radiation Hybrid Transcript May of the Mouse Genome”, Nature Genetics, 29 (2001), 194–200 | DOI
[4] Agarwala R. et al., “A Fast and Scalable Radiation Hybrid Map Construction and Integration Strategy”, Genome Research, 10 (2000), 350–364 | DOI
[5] Baily C., McLain T., Beard R., “Fuel Saving Strategies for Separated Spacecraft Interferometry”, Proceedings of the AIAA Guidance, Navigation, and Control Conference (Denver, Colorado), 2000
[6] Poort E. S., Aspects of sensitivity analysis for the traveling salesman problem, PhD dissertation, University of Groningen, Groningen, 1997, 191 pp.
[7] Libura M., “Sensitivity analysis for minimum Hamiltonian path and traveling salesman problems”, Discrete Applied Mathematics, 30:2–3 (1991), 197–211 | DOI | MR | Zbl
[8] Bokenhauer H.-J., Hromkovic J., Klasing R., Seibert S., Unger W., “Towards the Notion of Stability of Approximation for hard Optimization Tasks and the Traveling Salesman Problem”, Computer Science, 285 (1999), 3–24 | MR
[9] Buslaeva L. T., “Ob ustoichivosti algoritma “idi v blizhaishii””, Sb. nauchn. trudov Marshrutno-raspredelitelnye zadachi, UGTU-UPI, Ekaterinburg, 1995, 21–32