Mots-clés : Poisson bracket
@article{VUU_2010_1_a11,
author = {A. V. Borisov},
title = {Computer visualization of nonholonomic systems motion},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {137--145},
year = {2010},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2010_1_a11/}
}
A. V. Borisov. Computer visualization of nonholonomic systems motion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 137-145. http://geodesic.mathdoc.fr/item/VUU_2010_1_a11/
[1] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M., L., 1946, 655 pp.
[2] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–101 | MR
[3] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995, 432 pp. | MR | Zbl
[4] Kharlamova-Zabelina E. I., “Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki pri nalozhenii negolonomnoi svyazi”, Tr. Donetsk. industr. in-ta, 20:1 (1957), 69–75
[5] Borisov A. V., Dudoladov S. L., “Kovalevskaya exponents and Poissonian structures”, Regul. Chaotic Dyn., 4:3 (1999), 13–20 | DOI | MR | Zbl
[6] Tatarinov Ya. V., “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Trudy seminara po vektorn. i tenzorn. analizu, 23, 1988, 160–174 | MR | Zbl
[7] Kharlamova E. I., “Dvizhenie po inertsii girostata, podchinennogo negolonomnoi svyazi”, MTT, 1971, no. 3, 130–132
[8] Kharlamov P. V., “Girostat s negolonomnoi svyazyu”, MTT, 1971, no. 3, 120–130
[9] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki: I, II”, Regulyarnaya i khaoticheskaya dinamika, 1:1 (1996), 15–37 | MR
[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyuter. issled., M., Izhevsk, 2005, 576 pp. | MR
[11] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo MGU, M., 1996, 244 pp. | MR | Zbl
[12] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259 | DOI | MR | Zbl
[13] Vagner G., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektorn. i tenzorn. analizu, 5, 1941, 301–327 | MR | Zbl
[14] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl
[15] Fuller F. B., “The writhing number of a space curve”, Proc. Nat. Acad. Sci. USA, 68:4 (1971), 815–819 | DOI | MR | Zbl
[16] Kozlova Z. P. K zadache Suslova, Izv. AN SSSR, MTT, 1989, no. 1, 13–16
[17] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 2, NITs “Regulyarnaya i khaoticheskaya dinamika” Inst. kompyuter. issled., M., Izhevsk, 2009, 548 pp.