Computer visualization of nonholonomic systems motion
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 137-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problems of Hamiltonian representation and integrability of the nonholonomic Suslov system and its generalization suggested by S. A. Chaplygin. These aspects are very important for understanding the dynamics and qualitative analysis of the system. In particular, they are related to the nontrivial asymptotic behaviour (i.e. to some scattering problem). The paper presents a general approach based on the study of the hierarchy of dynamical behaviour of nonholonomic systems.
Keywords: Hamiltonian system, nonholonomic constraint, invariant measure, integrability.
Mots-clés : Poisson bracket
@article{VUU_2010_1_a11,
     author = {A. V. Borisov},
     title = {Computer visualization of nonholonomic systems motion},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {137--145},
     year = {2010},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2010_1_a11/}
}
TY  - JOUR
AU  - A. V. Borisov
TI  - Computer visualization of nonholonomic systems motion
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2010
SP  - 137
EP  - 145
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2010_1_a11/
LA  - ru
ID  - VUU_2010_1_a11
ER  - 
%0 Journal Article
%A A. V. Borisov
%T Computer visualization of nonholonomic systems motion
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2010
%P 137-145
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2010_1_a11/
%G ru
%F VUU_2010_1_a11
A. V. Borisov. Computer visualization of nonholonomic systems motion. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2010), pp. 137-145. http://geodesic.mathdoc.fr/item/VUU_2010_1_a11/

[1] Suslov G. K., Teoreticheskaya mekhanika, Gostekhizdat, M., L., 1946, 655 pp.

[2] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Uspekhi mekhaniki, 8:3 (1985), 85–101 | MR

[3] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995, 432 pp. | MR | Zbl

[4] Kharlamova-Zabelina E. I., “Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki pri nalozhenii negolonomnoi svyazi”, Tr. Donetsk. industr. in-ta, 20:1 (1957), 69–75

[5] Borisov A. V., Dudoladov S. L., “Kovalevskaya exponents and Poissonian structures”, Regul. Chaotic Dyn., 4:3 (1999), 13–20 | DOI | MR | Zbl

[6] Tatarinov Ya. V., “Razdelyayuschie peremennye i novye topologicheskie yavleniya v golonomnykh i negolonomnykh sistemakh”, Trudy seminara po vektorn. i tenzorn. analizu, 23, 1988, 160–174 | MR | Zbl

[7] Kharlamova E. I., “Dvizhenie po inertsii girostata, podchinennogo negolonomnoi svyazi”, MTT, 1971, no. 3, 130–132

[8] Kharlamov P. V., “Girostat s negolonomnoi svyazyu”, MTT, 1971, no. 3, 120–130

[9] Borisov A. V., Tsygvintsev A. V., “Pokazateli Kovalevskoi i integriruemye sistemy klassicheskoi dinamiki: I, II”, Regulyarnaya i khaoticheskaya dinamika, 1:1 (1996), 15–37 | MR

[10] Borisov A. V., Mamaev I. S., Dinamika tverdogo tela: Gamiltonovy metody, integriruemost, khaos, Inst. kompyuter. issled., M., Izhevsk, 2005, 576 pp. | MR

[11] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo MGU, M., 1996, 244 pp. | MR | Zbl

[12] Fedorov Yu. N., Maciejewski A. J., Przybylska M., “Suslov problem: integrability, meromorphic and hypergeometric solutions”, Nonlinearity, 22 (2009), 2231–2259 | DOI | MR | Zbl

[13] Vagner G., “Geometricheskaya interpretatsiya dvizheniya negolonomnykh dinamicheskikh sistem”, Trudy seminara po vektorn. i tenzorn. analizu, 5, 1941, 301–327 | MR | Zbl

[14] Borisov A. V., Mamaev I. S., Kilin A. A., “The rolling motion of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–219 | DOI | MR | Zbl

[15] Fuller F. B., “The writhing number of a space curve”, Proc. Nat. Acad. Sci. USA, 68:4 (1971), 815–819 | DOI | MR | Zbl

[16] Kozlova Z. P. K zadache Suslova, Izv. AN SSSR, MTT, 1989, no. 1, 13–16

[17] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 2, NITs “Regulyarnaya i khaoticheskaya dinamika” Inst. kompyuter. issled., M., Izhevsk, 2009, 548 pp.