Local interactions and fracture of deformable continua located into cavitating liquid flow
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 95-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The adjoint 3-D problem of shock local interaction of a liquid with the nonlinear deformable, damaged medium in the presence of the finite deformations is formulated and solved. Liquid influence is considered a kind of a shock wave or the high-speed jet, formed at collapse of bubbles of cavitation owing to axisymmetric or them cumulative compression at the front an extending shock wave. The special attention is thus given influence of wettability of a deformable surface.
Keywords: cavitation; a two-phase liquid; wettability; damageability of the deformable medium; erosive fatique.
@article{VUU_2009_4_a9,
     author = {A. N. Melsitov and V. A. Petushkov},
     title = {Local interactions and fracture of deformable continua located into cavitating liquid flow},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {95--106},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a9/}
}
TY  - JOUR
AU  - A. N. Melsitov
AU  - V. A. Petushkov
TI  - Local interactions and fracture of deformable continua located into cavitating liquid flow
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 95
EP  - 106
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_4_a9/
LA  - ru
ID  - VUU_2009_4_a9
ER  - 
%0 Journal Article
%A A. N. Melsitov
%A V. A. Petushkov
%T Local interactions and fracture of deformable continua located into cavitating liquid flow
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 95-106
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2009_4_a9/
%G ru
%F VUU_2009_4_a9
A. N. Melsitov; V. A. Petushkov. Local interactions and fracture of deformable continua located into cavitating liquid flow. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 95-106. http://geodesic.mathdoc.fr/item/VUU_2009_4_a9/

[1] Petushkov V. A., Frolov K. V., “Dinamika gidrouprugikh sistem pri impulsnom vozbuzhdenii”, Dinamika konstruktsii gidroaerouprugikh sistem, Nauka, M., 2002, 162–202

[2] Petushkov V. A., Melsitov A. N., “Dvukhfaznoe parozhidkostnoe techenie v perekhodnykh rezhimakh”, Matematicheskoe modelirovanie, 15:10 (2003), 109–128 | Zbl

[3] Melsitov A. N., Petushkov V. A., “Lokalnye volnovye protsessy v zhidkosti, vyzvannye predelnymi perekhodami izolirovannogo puzyrka para”, Matematicheskoe modelirovanie, 15:11 (2003), 51–68 | Zbl

[4] Petushkov V. A., Melsitov A. N., “Ob impulsnoi dinamike povrezhdaemykh obolochek, vzaimodeistvuyuschikh s dvukhfaznoi zhidkostyu”, PMTF, 2006, no. 1, 139–152 | Zbl

[5] Nigmatulin R. I., Dinamika mnogofaznykh sred, chast I, Nauka, M., 1987, 490 pp.

[6] Galiev Sh. U., Nelineinye volny v ogranichennykh sploshnykh sredakh, Naukova Dumka, Kiev, 1988, 253 pp. | MR

[7] Florschuetz L.W., Chao B. T., “On the mechanics of vapor bubble collapse”, Trans. ASME Ser. C, 87:2 (1965), 209–220 | DOI

[8] Margulis M. A., “Akusticheskie polya i kavitatsiya”, Nauka v SSSR: Sb., 4, AN SSSR, M., 1983, 48–55

[9] Petushkov V. A., “Chislennye issledovaniya nelineinykh volnovykh protsessov v zhidkosti i deformiruemom tele pri vysokoskorostnom udarnom vzaimodeistvii”, PMTF, 1991, no. 2, 134–143

[10] Rivkin S. L., Aleksandrov A. A., Kremenevskaya E. A., Termodinamicheskie proizvodnye dlya vody i vodyanogo para, Energiya, M., 1977, 305 pp.

[11] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Fizmatgiz, M., 1966, 506 pp.

[12] Seamen L., Curran B. R., Shockey D. A., “Computational models for ductile and brittle fracture”, J. of Appl. Phys., 47:11 (1976), 4814–4826 | DOI

[13] Petushkov V. A., Nadareishvili A. I., “Matematicheskoe modelirovanie nelineinykh protsessov deformirovaniya i razrusheniya ob'emnykh tel pri vysokoskorostnom soudarenii”, Matematicheskoe modelirovanie, 16:5 (2004), 17–29

[14] Gurson A. L., “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I. Yield Criteria and Flow Rules for Porous Ductile Materials”, Journal of Engineering Materials and Technology, 99 (1977), 2–15 | DOI

[15] Bass A., Putterman S., Merriman B., Ruuth S. J., “Symmetry Reduction for Molecular Dynamics Simulation of an Imploding Gas Bubble”, Journal of Computational Physics, 227 (2008), 2118–2129 | DOI | MR | Zbl