Mots-clés : invariant torus.
@article{VUU_2009_4_a6,
author = {A. N. Kulikov and D. A. Kulikov},
title = {After critical and precritical bifurcations of progressive wave in a~generalized {Ginzburg{\textendash}Landau} equation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {71--78},
year = {2009},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a6/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - After critical and precritical bifurcations of progressive wave in a generalized Ginzburg–Landau equation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2009 SP - 71 EP - 78 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2009_4_a6/ LA - ru ID - VUU_2009_4_a6 ER -
%0 Journal Article %A A. N. Kulikov %A D. A. Kulikov %T After critical and precritical bifurcations of progressive wave in a generalized Ginzburg–Landau equation %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2009 %P 71-78 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2009_4_a6/ %G ru %F VUU_2009_4_a6
A. N. Kulikov; D. A. Kulikov. After critical and precritical bifurcations of progressive wave in a generalized Ginzburg–Landau equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 71-78. http://geodesic.mathdoc.fr/item/VUU_2009_4_a6/
[1] Drazin F., Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005, 287 pp.
[2] Scheuer J., Malomed B. A., “Stable and chaotic solutions of the Ginzburg–Landau equation with periodic boundary conditions”, Physika D, 161:1–2 (2002), 102–115 | DOI | Zbl
[3] Malinetskii G. G., Potapov A. B., Podlazov A. V., Nelineinaya dinamika, Izd-vo Komkniga, M., 2006, 280 pp.
[4] Deissler R. J., “Turbulent burth, spots and slugs in a generalized Ginzburg–Landau equation”, Physics Letters A, 120:7 (1987), 334–340 | DOI | MR
[5] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh uravnenii vtorogo poryadka i ikh prilozheniya”, Trudy MMO, 27, 1970, 37–59
[6] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985, 280 pp. | MR
[7] Kulikov A. N., Kulikov D. A., “Bifurkatsiya kubicheskogo uravneniya Shredingera v sluchae trekh nezavisimykh peremennykh”, Vestnik Udmurtskogo universiteta, 2008, no. 3, 23–34
[8] Kotikov A. E., Kulikov A. N., “Bifurkatsiya beguschikh voln vidoizmennogo uravneniya Ginzburga–Landau”, Modelir. i analiz inform. sistem, 15:1 (2008), 10–15 | MR
[9] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Tsilindricheskie beguschie volny obobschennogo kubicheskogo uravneniya Shredingera”, Doklady RAN, 73:1 (2006), 125–129
[10] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR
[11] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 369 pp. | MR | Zbl
[12] Kolesov A. Yu., Kulikov A. N., Invariantnye tory nelineinykh evolyutsionnykh uravnenii, YarGU, Yaroslavl, 2003, 107 pp.
[13] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Diff. uravn., 39:5 (2003), 584–601 | MR | Zbl
[14] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Diff. uravn., 39:6 (2003), 738–753 | MR | Zbl