@article{VUU_2009_4_a3,
author = {S. R. Gallyamov and S. A. Mel'chukov},
title = {On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {33--44},
year = {2009},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/}
}
TY - JOUR AU - S. R. Gallyamov AU - S. A. Mel'chukov TI - On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2009 SP - 33 EP - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/ LA - ru ID - VUU_2009_4_a3 ER -
%0 Journal Article %A S. R. Gallyamov %A S. A. Mel'chukov %T On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2009 %P 33-44 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/ %G ru %F VUU_2009_4_a3
S. R. Gallyamov; S. A. Mel'chukov. On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 33-44. http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/
[1] Kesten H., “The critical probability of bond percolation on the square lattice equals 1/2”, Comm. Math. Phys., 74 (1980), 41–59 | DOI | MR | Zbl
[2] Sykes M. F., Essam J. W., “Exact critical percolation probabilities for site and bond percolation in two dimensions.”, J. Math. Phys., 5:8 (1964), 1117–1127 | DOI | MR
[3] Levinshtein M. E., Shur M. S., Shklovskii B. I., Efros A. L., “O svyazi mezhdu kriticheskimi indeksami teorii protekaniya”, ZhETF, 69 (1975), 386
[4] Gallyamov S. R., Melchukov S. A., “O neskeilenge veroyatnosti protekaniya prostoi kubicheskoi reshetki: teoriya i kompyuternyi eksperiment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 29–36
[5] Gallyamov S. R., “Porog protekaniya prostoi kubicheskoi reshetki v zadache uzlov v modeli reshetki Bete”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 109–115
[6] Stauffer D., Aharony A., Introduction to percolation theory, Tailor Francis, London, 1992
[7] Feder E., Fraktaly, Mir, M., 1991, 126–127 | MR
[8] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniyaya, algoritmy, Editorial URSS, M., 2002, 53–55
[9] Suding P. N., Ziff R. M., “Site percolation thresholds and universal formulas for the Archimedean lattices.”, Phys. Rev. E, 60:1 (1999), 275–283 | DOI
[10] Ziff R. M., Sapoval B., “The efficient determination of the percolation threshold by a frontier generating walk in a gradient”, J. Phys. A: Math. Gen., 19 (1986), L1169–L1172 | DOI | MR
[11] Akho A. V., Khopkroft D., Ulman D. D., Struktury dannykh i algoritmy, Izdatelskii dom Vilyams, M., 2000, 187–195
[12] van der Marck S. C., “Calculation of percolation threshold in high dimensions for fcc, bcc and diamond lattice”, Int. J. Mod. Phys. C, 9 (1998), 529–540 | DOI