On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 33-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of calculating the percolation threshold $x_c$ in d-dimensional space is proposed based on the average value of the quantity $x_{cL}$ of small-sized lattices $L$. The condition for applicability of the method has limited the range of $2d$ and $3d$ lattices being considered in the problem of knots to square and diamond lattices. The values of $x_{cL}$ for these lattices have calculated in terms of the vector of the initial state of the lattice and the adjacency matrix of the graph corresponding to the lattice with the fraction of knots $x=1$. Percolation thresholds for the square lattice $x_c=0.592744$ and the diamond lattice $x_c=0.430308$ have been calculated.
Keywords: percolation, lattice, percolation threshold, site problem; graph.
@article{VUU_2009_4_a3,
     author = {S. R. Gallyamov and S. A. Mel'chukov},
     title = {On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {33--44},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/}
}
TY  - JOUR
AU  - S. R. Gallyamov
AU  - S. A. Mel'chukov
TI  - On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 33
EP  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/
LA  - ru
ID  - VUU_2009_4_a3
ER  - 
%0 Journal Article
%A S. R. Gallyamov
%A S. A. Mel'chukov
%T On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 33-44
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/
%G ru
%F VUU_2009_4_a3
S. R. Gallyamov; S. A. Mel'chukov. On one method of calculating percolation thresholds for square and diamond lattices in the percolation problem of knots. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 33-44. http://geodesic.mathdoc.fr/item/VUU_2009_4_a3/

[1] Kesten H., “The critical probability of bond percolation on the square lattice equals 1/2”, Comm. Math. Phys., 74 (1980), 41–59 | DOI | MR | Zbl

[2] Sykes M. F., Essam J. W., “Exact critical percolation probabilities for site and bond percolation in two dimensions.”, J. Math. Phys., 5:8 (1964), 1117–1127 | DOI | MR

[3] Levinshtein M. E., Shur M. S., Shklovskii B. I., Efros A. L., “O svyazi mezhdu kriticheskimi indeksami teorii protekaniya”, ZhETF, 69 (1975), 386

[4] Gallyamov S. R., Melchukov S. A., “O neskeilenge veroyatnosti protekaniya prostoi kubicheskoi reshetki: teoriya i kompyuternyi eksperiment”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 2, 29–36

[5] Gallyamov S. R., “Porog protekaniya prostoi kubicheskoi reshetki v zadache uzlov v modeli reshetki Bete”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 109–115

[6] Stauffer D., Aharony A., Introduction to percolation theory, Tailor Francis, London, 1992

[7] Feder E., Fraktaly, Mir, M., 1991, 126–127 | MR

[8] Tarasevich Yu. Yu., Perkolyatsiya: teoriya, prilozheniyaya, algoritmy, Editorial URSS, M., 2002, 53–55

[9] Suding P. N., Ziff R. M., “Site percolation thresholds and universal formulas for the Archimedean lattices.”, Phys. Rev. E, 60:1 (1999), 275–283 | DOI

[10] Ziff R. M., Sapoval B., “The efficient determination of the percolation threshold by a frontier generating walk in a gradient”, J. Phys. A: Math. Gen., 19 (1986), L1169–L1172 | DOI | MR

[11] Akho A. V., Khopkroft D., Ulman D. D., Struktury dannykh i algoritmy, Izdatelskii dom Vilyams, M., 2000, 187–195

[12] van der Marck S. C., “Calculation of percolation threshold in high dimensions for fcc, bcc and diamond lattice”, Int. J. Mod. Phys. C, 9 (1998), 529–540 | DOI