Parallel calculation methods for statistical mechanics problems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 167-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the help of mathematical modeling, we study the behavior of a gas ($\sim10^6$ particles) in a one-dimensional tube. For this dynamical system, we consider the following cases: \item[–] collisionless gas in a tube with both ends closed, the particles of the gas bounce elastically between the ends, \item[–] collisionless gas in a tube with its left end vibrating harmonically in a prescribed manner, \item[–] collisionless gas in a tube with a moving piston, the piston's mass is comparable to the mass of a particle. The emphasis is on the analysis of the asymptotic ($t\rightarrow\infty$) behavior of the system and specifically on the transition to the state of statistical or thermal equilibrium. This analysis allows preliminary conclusions on the nature of relaxation processes.
Keywords: one-dimensional collisionless gas, statistical equilibrium, thermodynamical equilibrium, weak limit.
@article{VUU_2009_4_a15,
     author = {I. S. Mamaev},
     title = {Parallel calculation methods for statistical mechanics problems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {167--175},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a15/}
}
TY  - JOUR
AU  - I. S. Mamaev
TI  - Parallel calculation methods for statistical mechanics problems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 167
EP  - 175
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_4_a15/
LA  - ru
ID  - VUU_2009_4_a15
ER  - 
%0 Journal Article
%A I. S. Mamaev
%T Parallel calculation methods for statistical mechanics problems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 167-175
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2009_4_a15/
%G ru
%F VUU_2009_4_a15
I. S. Mamaev. Parallel calculation methods for statistical mechanics problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 167-175. http://geodesic.mathdoc.fr/item/VUU_2009_4_a15/

[1] Kozlov V. V., Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, RKhD, M., Izhevsk, 2008

[2] Kozlov V. V., Teplovoe ravnovesie po Gibbsu i Puankare, IKI, M., Izhevsk, 2002 | MR

[3] Landau L. D., Lifshits E. M., Teoreticheskaya fizika: V 10 tt., v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR

[4] Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, v. 4, Mir, M., 1976

[5] Hlawka E., “Mathematische Modelle der kinetischen Gastheorie”, Rhein.-Westfal. Acad. d. Wissensch. Natur-, Ingenier- und Wirtschaftswissensch. Opladen: Westdeutscher Verl., 240 (1974), 361–376 | MR

[6] Lebovits L., Sinai Ya., Chernov N., “Dinamika massivnogo porshnya, pogruzhennogo v idealnyi gaz”, UMN, 57:6 (2002), 3–86 | DOI | MR

[7] Prigozhin I., Stengers I., Poryadok iz khaosa, Progress, M., 1986

[8] Puankare A., “Zamechaniya o kineticheskoi teorii gazov”, Izbrannye trudy, v. 3, Nauka, M., 1974, 385–412

[9] Bunimovich L., “Kinematics, Equilibrium, and Shape in Hamiltonian System: The “LAB” effect”, Chaos, 13:3 (2003), 903–912 | DOI | MR | Zbl