Keywords: hydrodynamics, heat transfer, stochasticity.
@article{VUU_2009_4_a11,
author = {I. B. Palymskiy},
title = {About numerical simulation of three-dimensional convection},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {118--132},
year = {2009},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a11/}
}
I. B. Palymskiy. About numerical simulation of three-dimensional convection. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 118-132. http://geodesic.mathdoc.fr/item/VUU_2009_4_a11/
[1] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl
[2] Hartlep T., Tilgner A., Busse F. H., “Large scale structures in Rayleigh–Benard convection at high Rayleigh numbers”, Phys. Rev. Lett., 91:6 (2003), 064501, 4 pp. | DOI
[3] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl
[4] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl
[5] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 5–60
[6] Van Reeuwijk M., Jonker H. J. J., Hanjalic K., “Identification of the wind in Rayleigh–Benard convection”, Phys. Fluids, 17:4 (2005), 051704, 4 pp. | MR | Zbl
[7] Grotzbach G., “Direct numerical simulation of laminar and turbulent Benard convection”, J. Fluid Mech., 119 (1982), 27–53 | DOI
[8] Travis B., Olson P., Schubert G., “The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection”, J. Fluid Mech., 216 (1990), 71–91 | DOI
[9] Arter W., “Nonlinear Rayleigh–Benard convection with square planform”, J. Fluid Mech., 152 (1985), 391–418 | DOI | Zbl
[10] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids. A, 5:12 (1993), 3226–3232 | DOI | Zbl
[11] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two-and three-dimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl
[12] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a two-dimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl
[13] Gertsenshtein S. Ya., Rodichev E. B., Shmidt V. M., “Vzaimodeistvie trekhmernykh voln vo vraschayuschemsya gorizontalnom sloe zhidkosti, podogrevaemom snizu”, Dokl. AN SSSR, 238:3 (1978), 545–548
[14] Thual O., “Zero-Prandtl-number convection”, J. Fluid Mech., 240 (1992), 229–258 | DOI | Zbl
[15] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.
[16] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI
[17] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156
[18] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.
[19] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978, 687 pp. | MR
[20] Nikitin N. V., Polezhaev V. I., “Trekhmernye effekty perekhodnykh i turbulentnykh rezhimov teplovoi gravitatsionnoi konvektsii v metode Chokhralskogo”, Izvestiya RAN, seriya MZhG, 1999, no. 6, 81–90 | Zbl
[21] Nikitin N. V., “Spektralno-konechnoraznostnyi metod rascheta turbulentnykh techenii neszhimaemykh zhidkostei v trubakh i kanalakh”, ZhVM i MF, 34:6 (1994), 909–925 | MR | Zbl
[22] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zh. vychisl. matematiki, 7:2 (2004), 143–163
[23] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, IPM AN SSSR im. M. V. Keldysha, 1987, 28 pp. | MR
[24] Babenko K. I., Rakhmanov A. I., Chislennoe issledovanie dvumernoi konvektsii, Preprint No 118, IPM AN SSSR im. M. V. Keldysha, 1988, 26 pp. | MR
[25] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychisl. tekhnologii, 5:6 (2000), 53–61 | MR
[26] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28
[27] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izvestiya RAN. MZhG, 2007, no. 4, 61–71
[28] Krishnamurti R., Howard L., “Large-scale generation in turbulent convection”, Proc. Natl. Acad. Sci. USA, 78:4 (1981), 1981–1985 | DOI
[29] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984, 285 pp. | Zbl
[30] Belotserkovskii O. M., Oparin A. M., Chislennyi eksperiment v turbulentnosti: Ot poryadka k khaosu, Izdanie 2-e, dop., Nauka, M., 2000, 223 s. pp. | MR
[31] Farhadieh R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, Pt 4, J. Fluid Mech., 66 (1974), 739–752 | DOI
[32] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 378 pp. | MR
[33] Niemela J. J., Skrbek L., Sreenivasan K. R., Donnelly R. J., “Turbulent convection at very high Rayleigh numbers”, Nature, 404:20 (2000), 837–840 | DOI
[34] Wu X.-Z., Kadanoff L., Libchaber A., Sano M., “Frequency power spectrum of temperature fluctuations in free convection”, Phys. Rev. Lett., 64:18 (1990), 2140–2143 | DOI
[35] Shang X.-D., Xia K.-Q., “Scaling of the velocity power spectra in turbulent thermal convection”, Phys. Rev. E, 64 (2001), 065301, 4 pp. | DOI
[36] Frik P. G., Turbulentnost: podkhody i modeli, Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2003, 292 pp.