About numerical simulation of three-dimensional convection
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 118-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of three-dimensional convection of the liquid in rectangular parallelepiped with stress-free isothermal horizontal boundaries, at heating from below is considered. The special spectral-finite difference method is offered with the second order aproximation on space and the first on time. The linear analysis proposed numerical method has been shown that numerical method has the good quantitative correspondence in long-wave part of spectrum and qualitative – in short-wave. As test the calculations of two-dimensional roll and three-dimensional turbulent Rayleigh–Benard convection with supercriticality is equal to 2.2 and 950, accordingly are performed with Prandtl number is equal to 10.
Mots-clés : simulation, convection, turbulence
Keywords: hydrodynamics, heat transfer, stochasticity.
@article{VUU_2009_4_a11,
     author = {I. B. Palymskiy},
     title = {About numerical simulation of three-dimensional convection},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {118--132},
     year = {2009},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_4_a11/}
}
TY  - JOUR
AU  - I. B. Palymskiy
TI  - About numerical simulation of three-dimensional convection
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 118
EP  - 132
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_4_a11/
LA  - ru
ID  - VUU_2009_4_a11
ER  - 
%0 Journal Article
%A I. B. Palymskiy
%T About numerical simulation of three-dimensional convection
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 118-132
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2009_4_a11/
%G ru
%F VUU_2009_4_a11
I. B. Palymskiy. About numerical simulation of three-dimensional convection. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 4 (2009), pp. 118-132. http://geodesic.mathdoc.fr/item/VUU_2009_4_a11/

[1] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl

[2] Hartlep T., Tilgner A., Busse F. H., “Large scale structures in Rayleigh–Benard convection at high Rayleigh numbers”, Phys. Rev. Lett., 91:6 (2003), 064501, 4 pp. | DOI

[3] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl

[4] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl

[5] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 5–60

[6] Van Reeuwijk M., Jonker H. J. J., Hanjalic K., “Identification of the wind in Rayleigh–Benard convection”, Phys. Fluids, 17:4 (2005), 051704, 4 pp. | MR | Zbl

[7] Grotzbach G., “Direct numerical simulation of laminar and turbulent Benard convection”, J. Fluid Mech., 119 (1982), 27–53 | DOI

[8] Travis B., Olson P., Schubert G., “The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection”, J. Fluid Mech., 216 (1990), 71–91 | DOI

[9] Arter W., “Nonlinear Rayleigh–Benard convection with square planform”, J. Fluid Mech., 152 (1985), 391–418 | DOI | Zbl

[10] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids. A, 5:12 (1993), 3226–3232 | DOI | Zbl

[11] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two-and three-dimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl

[12] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a two-dimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl

[13] Gertsenshtein S. Ya., Rodichev E. B., Shmidt V. M., “Vzaimodeistvie trekhmernykh voln vo vraschayuschemsya gorizontalnom sloe zhidkosti, podogrevaemom snizu”, Dokl. AN SSSR, 238:3 (1978), 545–548

[14] Thual O., “Zero-Prandtl-number convection”, J. Fluid Mech., 240 (1992), 229–258 | DOI | Zbl

[15] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.

[16] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI

[17] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156

[18] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.

[19] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978, 687 pp. | MR

[20] Nikitin N. V., Polezhaev V. I., “Trekhmernye effekty perekhodnykh i turbulentnykh rezhimov teplovoi gravitatsionnoi konvektsii v metode Chokhralskogo”, Izvestiya RAN, seriya MZhG, 1999, no. 6, 81–90 | Zbl

[21] Nikitin N. V., “Spektralno-konechnoraznostnyi metod rascheta turbulentnykh techenii neszhimaemykh zhidkostei v trubakh i kanalakh”, ZhVM i MF, 34:6 (1994), 909–925 | MR | Zbl

[22] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zh. vychisl. matematiki, 7:2 (2004), 143–163

[23] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, IPM AN SSSR im. M. V. Keldysha, 1987, 28 pp. | MR

[24] Babenko K. I., Rakhmanov A. I., Chislennoe issledovanie dvumernoi konvektsii, Preprint No 118, IPM AN SSSR im. M. V. Keldysha, 1988, 26 pp. | MR

[25] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychisl. tekhnologii, 5:6 (2000), 53–61 | MR

[26] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28

[27] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izvestiya RAN. MZhG, 2007, no. 4, 61–71

[28] Krishnamurti R., Howard L., “Large-scale generation in turbulent convection”, Proc. Natl. Acad. Sci. USA, 78:4 (1981), 1981–1985 | DOI

[29] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984, 285 pp. | Zbl

[30] Belotserkovskii O. M., Oparin A. M., Chislennyi eksperiment v turbulentnosti: Ot poryadka k khaosu, Izdanie 2-e, dop., Nauka, M., 2000, 223 s. pp. | MR

[31] Farhadieh R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, Pt 4, J. Fluid Mech., 66 (1974), 739–752 | DOI

[32] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 378 pp. | MR

[33] Niemela J. J., Skrbek L., Sreenivasan K. R., Donnelly R. J., “Turbulent convection at very high Rayleigh numbers”, Nature, 404:20 (2000), 837–840 | DOI

[34] Wu X.-Z., Kadanoff L., Libchaber A., Sano M., “Frequency power spectrum of temperature fluctuations in free convection”, Phys. Rev. Lett., 64:18 (1990), 2140–2143 | DOI

[35] Shang X.-D., Xia K.-Q., “Scaling of the velocity power spectra in turbulent thermal convection”, Phys. Rev. E, 64 (2001), 065301, 4 pp. | DOI

[36] Frik P. G., Turbulentnost: podkhody i modeli, Institut kompyuternykh issledovanii, Moskva, Izhevsk, 2003, 292 pp.