Some properties of the operator of the measure extension
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 114-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The operator defining for a measure on algebra of sets, the extension on the sigma-algebra generated by the given algebra is considered. On the basis of the representation of the extended measure in the minimax terms, the property of the isometric isomorphism for the above-mentioned operator for the traditional normalizations is established. Some properties connected with the preservation of order relations under the given operator are established.
Keywords: algebra of sets, measure, extension of measure, isometric isomorphism.
@article{VUU_2009_3_a9,
     author = {A. G. Chentsov},
     title = {Some properties of the operator of the measure extension},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {114--127},
     year = {2009},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_3_a9/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Some properties of the operator of the measure extension
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 114
EP  - 127
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_3_a9/
LA  - ru
ID  - VUU_2009_3_a9
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Some properties of the operator of the measure extension
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 114-127
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2009_3_a9/
%G ru
%F VUU_2009_3_a9
A. G. Chentsov. Some properties of the operator of the measure extension. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 114-127. http://geodesic.mathdoc.fr/item/VUU_2009_3_a9/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit-ry, M., 1962, 895 pp.

[2] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[3] Bogachev V. I., Osnovy teorii mery, v. 1, Regulyarnaya i khaoticheskaya dinamika, Moskva, Izhevsk, 2003, 543 pp.

[4] Bogachev V. I., Osnovy teorii mery, v. 2, Regulyarnaya i khaoticheskaya dinamika, Moskva, Izhevsk, 2003, 575 s. pp.

[5] Chentsov A. G., “K voprosu o prodolzhenii mery”, Metody negladkoi optimizatsii i zadachi upravleniya: sb., UNTs AN SSSR, Sverdlovsk, 1986, 126–134 | MR

[6] Chentsov A. G., O zadache prodolzheniya mery, Dep. v VINITI 29.06.83, No 3504-83, AN SSSR. UNTs. IMM, Sverdlovsk, 1983, 81 pp.

[7] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, UGTU-UPI, Ekaterinburg, 2008, 388 pp.

[8] Chentsov A. G., “Ob odnom klasse nedirakovskikh schetno-additivnykh mer”, Vestnik PGTU. Funktsionalno-differentsialnye uravneniya (spetsialnyi vypusk): sb., PGTU, Perm, 2002, 238–252

[9] Chentsov A. G., “Nedirakovskie (0,1)-mery i sigma-topologicheskie prostranstva”, Vestnik Chelyabinskogo universiteta, 2003, no. 2(8), 190–202 | MR

[10] Chentsov A. G., Prilozheniya teorii mery k zadacham upravleniya, Sred.-Ural. kn. izd-vo, Sverdlovsk, 1985, 128 pp.

[11] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR

[12] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.