@article{VUU_2009_3_a8,
author = {T. S. Tinyukova and Yu. P. Chuburin},
title = {Quasi-levels of the discrete {Schr\"odinger} equation with a~decreasing potential on a~graph},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {104--113},
year = {2009},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/}
}
TY - JOUR AU - T. S. Tinyukova AU - Yu. P. Chuburin TI - Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2009 SP - 104 EP - 113 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/ LA - ru ID - VUU_2009_3_a8 ER -
%0 Journal Article %A T. S. Tinyukova %A Yu. P. Chuburin %T Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2009 %P 104-113 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/ %G ru %F VUU_2009_3_a8
T. S. Tinyukova; Yu. P. Chuburin. Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 104-113. http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/
[1] Orellana P. A., Domingulz-Adame F., Gomes I., Ladron de Guevara M. L., “Transport through a quantum wire a side quantum-dot array”, Phys. Rev. B, 67 (2003), 085321, 5 pp. | DOI
[2] Shangguan W. Z., Au Yeung T. C., Yu Y. B., Kam C. H., “Quantum transtort in one-dimensional quantum dot array”, Phys. Rev. B, 63 (2001), 235323, 9 pp. | DOI
[3] Yan Chen, Shi-Yie Xiong, Evangelou S. N., “Quantum oscillations in mesoscopic rings with many chains”, Phys. Rev. B, 56:8 (1997), 4778–4784 | DOI
[4] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72 (2005), 056611, 7 pp. | DOI | MR
[5] Chakrabarti A., “Fano resonance in discrete lattice models: Controlling lineshapes with impurities”, Phys. Letters A, 336:4–5 (2007), 507–512 | DOI
[6] Bulka B. R., Stefanski P., “Fano and Kondo resonance in electronic current throught nanodevices”, Phys. Rev. Let., 86:22 (2001), 5128–5131 | DOI
[7] Izyumov Yu. A., Skryabin Yu. N., Statisticheskaya mekhanika magnito-uporyadochennykh sistem, Nauka, M., 1987, 264 pp. | MR
[8] Karachalios N. I., “The number of bound states for a discrete Schrodinger operator on $\mathbb Z^N$, $N\ge1$ lattices”, Y. Phys. A.: Math. Theor., 41 (2008), 455201, 14 pp. | DOI | MR | Zbl
[9] Pelinovsky D. E., Stefanov A., On the spectral theory and dispersive estimates for a discrete Shrödinger equation in one dimension, 2008, arXiv: 0804.1963 | MR
[10] Abdullaev Zh. I., Lakaev S. N., “Asimptotika diskretnogo spektra raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, Teor. matem. fizika, 136:2 (2003), 231–245 | DOI | MR | Zbl
[11] Dutkay D. E., Yorgensen P. E. T., Spectral theory for discrete laplacians, 2008, arXiv: 0802.2347
[12] Wolfram T., Callaway Y., “Spin-wave impurity states in ferromagnets”, Phys. Rev., 130:6 (1963), 2207–2217 | DOI | Zbl
[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR
[14] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A.: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl
[15] Albeverio S., Gestezi F., Khëeg-Kron P., Kholden Kh., Reshaemye modeli v kvantovoi fizike, Mir, M., 1991, 568 pp.
[16] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR
[17] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969, 396 pp. | MR