Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 104-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the discrete Schrödinger operator perturbed by a decreasing potential of the form $\varepsilon V$ defined on a graph the nodes of which lie on the union of two intersected straight lines. We prove that non-vanishing quasi-levels do not exist in the neighbourhood of zero for a small $\varepsilon$.
Keywords: discrete Schrödinger equation, eigenvalue, resonance.
@article{VUU_2009_3_a8,
     author = {T. S. Tinyukova and Yu. P. Chuburin},
     title = {Quasi-levels of the discrete {Schr\"odinger} equation with a~decreasing potential on a~graph},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {104--113},
     year = {2009},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/}
}
TY  - JOUR
AU  - T. S. Tinyukova
AU  - Yu. P. Chuburin
TI  - Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 104
EP  - 113
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/
LA  - ru
ID  - VUU_2009_3_a8
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%A Yu. P. Chuburin
%T Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 104-113
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/
%G ru
%F VUU_2009_3_a8
T. S. Tinyukova; Yu. P. Chuburin. Quasi-levels of the discrete Schrödinger equation with a decreasing potential on a graph. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 104-113. http://geodesic.mathdoc.fr/item/VUU_2009_3_a8/

[1] Orellana P. A., Domingulz-Adame F., Gomes I., Ladron de Guevara M. L., “Transport through a quantum wire a side quantum-dot array”, Phys. Rev. B, 67 (2003), 085321, 5 pp. | DOI

[2] Shangguan W. Z., Au Yeung T. C., Yu Y. B., Kam C. H., “Quantum transtort in one-dimensional quantum dot array”, Phys. Rev. B, 63 (2001), 235323, 9 pp. | DOI

[3] Yan Chen, Shi-Yie Xiong, Evangelou S. N., “Quantum oscillations in mesoscopic rings with many chains”, Phys. Rev. B, 56:8 (1997), 4778–4784 | DOI

[4] Miroshnichenko A. E., Kivshar Y. S., “Engineering Fano resonances in discrete arrays”, Phys. Rev. E, 72 (2005), 056611, 7 pp. | DOI | MR

[5] Chakrabarti A., “Fano resonance in discrete lattice models: Controlling lineshapes with impurities”, Phys. Letters A, 336:4–5 (2007), 507–512 | DOI

[6] Bulka B. R., Stefanski P., “Fano and Kondo resonance in electronic current throught nanodevices”, Phys. Rev. Let., 86:22 (2001), 5128–5131 | DOI

[7] Izyumov Yu. A., Skryabin Yu. N., Statisticheskaya mekhanika magnito-uporyadochennykh sistem, Nauka, M., 1987, 264 pp. | MR

[8] Karachalios N. I., “The number of bound states for a discrete Schrodinger operator on $\mathbb Z^N$, $N\ge1$ lattices”, Y. Phys. A.: Math. Theor., 41 (2008), 455201, 14 pp. | DOI | MR | Zbl

[9] Pelinovsky D. E., Stefanov A., On the spectral theory and dispersive estimates for a discrete Shrödinger equation in one dimension, 2008, arXiv: 0804.1963 | MR

[10] Abdullaev Zh. I., Lakaev S. N., “Asimptotika diskretnogo spektra raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, Teor. matem. fizika, 136:2 (2003), 231–245 | DOI | MR | Zbl

[11] Dutkay D. E., Yorgensen P. E. T., Spectral theory for discrete laplacians, 2008, arXiv: 0802.2347

[12] Wolfram T., Callaway Y., “Spin-wave impurity states in ferromagnets”, Phys. Rev., 130:6 (1963), 2207–2217 | DOI | Zbl

[13] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982, 432 pp. | MR

[14] Baranova L. Y., Chuburin Y. P., “Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential”, J. Phys. A.: Math. Theor., 41 (2008), 435205, 11 pp. | DOI | MR | Zbl

[15] Albeverio S., Gestezi F., Khëeg-Kron P., Kholden Kh., Reshaemye modeli v kvantovoi fizike, Mir, M., 1991, 568 pp.

[16] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977, 360 pp. | MR

[17] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969, 396 pp. | MR