Error of interpolation by a piecewise parabolic polynomial on a triangle
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 91-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to analysing the interpolation of the function of two variables by a parabolic polynomial on a triangle for the finite element method. The estimates of error for a given piecewise parabolic polynomial depend only on the diameter of restricted partition and don't depend on the angles of triangulation.
Mots-clés : error of interpolation, piecewise parabolic polynomial, triangulation
Keywords: finite element method.
@article{VUU_2009_3_a6,
     author = {N. V. Latypova},
     title = {Error of interpolation by a~piecewise parabolic polynomial on a~triangle},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {91--97},
     year = {2009},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_3_a6/}
}
TY  - JOUR
AU  - N. V. Latypova
TI  - Error of interpolation by a piecewise parabolic polynomial on a triangle
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 91
EP  - 97
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_3_a6/
LA  - ru
ID  - VUU_2009_3_a6
ER  - 
%0 Journal Article
%A N. V. Latypova
%T Error of interpolation by a piecewise parabolic polynomial on a triangle
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 91-97
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2009_3_a6/
%G ru
%F VUU_2009_3_a6
N. V. Latypova. Error of interpolation by a piecewise parabolic polynomial on a triangle. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 91-97. http://geodesic.mathdoc.fr/item/VUU_2009_3_a6/

[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $\mathbb R^n$ with applications to finite element methods”, Arch. Rat. Mech. and Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[2] Subbotin Yu. N., “Mnogomernaya kratnaya polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii: Sb., Novosibirsk, 1981, 148–152 | MR

[3] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Tr. IMM UrO RAN, 2, 1992, 110–119 | MR | Zbl

[4] Subbotin Yu. N., “A New Cubic Element in the FEM”, Proceeding of the Steklov Institute of Mathematics, Suppl. 2, 2005, S176–S187 | MR | Zbl

[5] Baidakova N. V., “Jn some interpolation process by polynomials of degree 4m+1 on the triangle”, Russian Journal of numerical analysis and mathematical modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl

[6] Baidakova N. V., “A Method of Hermite interpolation by polynomials of the third degree on a triangle”, Proceeding of the Steklov Institute of Mathematics, Suppl. 2, 2005, S49–S55 | MR | Zbl

[7] Latypova N. V., “Pogreshnost approksimatsii mnogochlenami stepeni 4k+3 na treugolnike”, Trudy Mezhdunarodnoi shkoly S. B. Stechkina po teorii funktsii: sb., UrO RAN, Ekaterinburg, 1999, 128–137

[8] Latypova N. V., “Error estimates of approximation by polynomials of degree 4k+3 on the triangle”, Proceeding of the Steklov Institute of Mathematics, Suppl. 1, 2002, S190–S213 | MR | Zbl

[9] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestnik Udmurtskogo universiteta. Matematika, 2003, 3–10