Numerical simulation of multiparticle systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 135-146

Voir la notice de l'article provenant de la source Math-Net.Ru

Systems of material points interacting both with one another and with an external field are considered in Euclidean space. For the case of arbitrary binary interaction depending solely on the mutual distance between the bodies, new integrals are found, which form a Galilean momentum vector. A corresponding algebra of integrals constituted by the integrals of momentum, angular momentum, and Galilean momentum is presented. Particle systems with a particle-interaction potential homogeneous of degree $\alpha=-2$ are considered. The most general form of the additional integral of motion, which we term the Jacobi integral, is presented for such systems. A new nonlinear algebra of integrals including the Jacobi integral is found. A systematic description is given to a new reduction procedure and possibilities of applying it to dynamics with the aim of lowering the order of Hamiltonian systems. Some new integrable and superintegrable systems generalizing the classical ones are also described. Certain generalizations of the Lagrangian identity for systems with a particle-interaction potential homogeneous of degree $\alpha=-2$ are presented. In addition, computational experiments are used to prove the nonintegrability of the Jacobi problem on a plane.
Keywords: multiparticle systems, Jacobi integral.
@article{VUU_2009_3_a11,
     author = {A. A. Kilin},
     title = {Numerical simulation of multiparticle systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {135--146},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_3_a11/}
}
TY  - JOUR
AU  - A. A. Kilin
TI  - Numerical simulation of multiparticle systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 135
EP  - 146
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_3_a11/
LA  - ru
ID  - VUU_2009_3_a11
ER  - 
%0 Journal Article
%A A. A. Kilin
%T Numerical simulation of multiparticle systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 135-146
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2009_3_a11/
%G ru
%F VUU_2009_3_a11
A. A. Kilin. Numerical simulation of multiparticle systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 3 (2009), pp. 135-146. http://geodesic.mathdoc.fr/item/VUU_2009_3_a11/