Basis of differential invariants of symmetry group of Green–Naghdi equations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 52-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

System of Green–Naghdi equations describing long wave propagation on fluid surface is considered. Extensions of operator of Lie algebra of these equations, the differential invariants and the operators of invariant differentiation are calculated. The theorem about the basis of the differential invariants ie proved. In addition, the dependence between the differential invariants is described.
Keywords: Green–Naghdi equation, differential invariants, operators of invariant differentiation, basis of differential invariants.
@article{VUU_2009_2_a5,
     author = {N. V. Lyubashevskaya and A. P. Chupakhin},
     title = {Basis of differential invariants of symmetry group of {Green{\textendash}Naghdi} equations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {52--62},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/}
}
TY  - JOUR
AU  - N. V. Lyubashevskaya
AU  - A. P. Chupakhin
TI  - Basis of differential invariants of symmetry group of Green–Naghdi equations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 52
EP  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/
LA  - ru
ID  - VUU_2009_2_a5
ER  - 
%0 Journal Article
%A N. V. Lyubashevskaya
%A A. P. Chupakhin
%T Basis of differential invariants of symmetry group of Green–Naghdi equations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 52-62
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/
%G ru
%F VUU_2009_2_a5
N. V. Lyubashevskaya; A. P. Chupakhin. Basis of differential invariants of symmetry group of Green–Naghdi equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 52-62. http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Ovsyannikov L. V., “Osobyi vikhr”, Prikladnaya mekhanika i tekhnicheskaya fizika, 36:3 (1995), 45–52 | MR | Zbl

[3] Chupakhin A. P., “O barokhronnykh dvizheniyakh gaza”, Doklady RAN, 352:5 (1997), 624–626 | MR

[4] Chupakhin A. P., “Singular Vortex in Hydro- and Gasdynamics”, In Analitical Approaches to Multydimentional Balance Laws, Nova Science Publishers Inc., New York, 2006, 89–119 | MR

[5] Olver P. J., Equivalence, invariants and symmetry, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[6] Olver P. J., “Generating differential Invariants”, J. Math. Anal. Appl., 333:1 (2007), 450–471 | DOI | MR | Zbl

[7] Chupakhin A. P., “Differential invariants: theorem of commutativity”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 25–33 | DOI | MR | Zbl

[8] Golovin S. V., “Applications of differential invariants of finite dimentional groups in hydrodynamics”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 35–51 | DOI | MR | Zbl

[9] Khabirov S. V., “The differential-invariant submodels”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 473–480 | DOI | MR | Zbl

[10] Su C. H., Gardner C. S., “Korteweg–de Vries equation and generalizations. III. Derivation of the Korteweg–de Vries equation and Burgers equation”, J. Math. Phys., 10:3 (1969), 536–539 | DOI | MR | Zbl

[11] Bagderina Yu. Yu., Chupakhin A. P., “Invariantnye i chastichno invariantnye resheniya uravnenii Grina–Nagdi”, Prikladnaya mekhanika i tekhnicheskaya fizika, 46:6 (2005), 26–35 | MR | Zbl

[12] Kaplansky I., Introduction to Differential Algebra, Hermann, Paris, 1967 | MR

[13] Urazbakhtina L. Z., “Differentsialno invariantnye podmodeli trekhmernykh podalgebr dlya szhimaemoi zhidkosti”, Sibirskii zhurnal industrialnoi matematiki, 10:2(30) (2007), 128–137 | MR | Zbl