@article{VUU_2009_2_a5,
author = {N. V. Lyubashevskaya and A. P. Chupakhin},
title = {Basis of differential invariants of symmetry group of {Green{\textendash}Naghdi} equations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {52--62},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/}
}
TY - JOUR AU - N. V. Lyubashevskaya AU - A. P. Chupakhin TI - Basis of differential invariants of symmetry group of Green–Naghdi equations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2009 SP - 52 EP - 62 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/ LA - ru ID - VUU_2009_2_a5 ER -
%0 Journal Article %A N. V. Lyubashevskaya %A A. P. Chupakhin %T Basis of differential invariants of symmetry group of Green–Naghdi equations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2009 %P 52-62 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/ %G ru %F VUU_2009_2_a5
N. V. Lyubashevskaya; A. P. Chupakhin. Basis of differential invariants of symmetry group of Green–Naghdi equations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 52-62. http://geodesic.mathdoc.fr/item/VUU_2009_2_a5/
[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[2] Ovsyannikov L. V., “Osobyi vikhr”, Prikladnaya mekhanika i tekhnicheskaya fizika, 36:3 (1995), 45–52 | MR | Zbl
[3] Chupakhin A. P., “O barokhronnykh dvizheniyakh gaza”, Doklady RAN, 352:5 (1997), 624–626 | MR
[4] Chupakhin A. P., “Singular Vortex in Hydro- and Gasdynamics”, In Analitical Approaches to Multydimentional Balance Laws, Nova Science Publishers Inc., New York, 2006, 89–119 | MR
[5] Olver P. J., Equivalence, invariants and symmetry, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[6] Olver P. J., “Generating differential Invariants”, J. Math. Anal. Appl., 333:1 (2007), 450–471 | DOI | MR | Zbl
[7] Chupakhin A. P., “Differential invariants: theorem of commutativity”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 25–33 | DOI | MR | Zbl
[8] Golovin S. V., “Applications of differential invariants of finite dimentional groups in hydrodynamics”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 35–51 | DOI | MR | Zbl
[9] Khabirov S. V., “The differential-invariant submodels”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 473–480 | DOI | MR | Zbl
[10] Su C. H., Gardner C. S., “Korteweg–de Vries equation and generalizations. III. Derivation of the Korteweg–de Vries equation and Burgers equation”, J. Math. Phys., 10:3 (1969), 536–539 | DOI | MR | Zbl
[11] Bagderina Yu. Yu., Chupakhin A. P., “Invariantnye i chastichno invariantnye resheniya uravnenii Grina–Nagdi”, Prikladnaya mekhanika i tekhnicheskaya fizika, 46:6 (2005), 26–35 | MR | Zbl
[12] Kaplansky I., Introduction to Differential Algebra, Hermann, Paris, 1967 | MR
[13] Urazbakhtina L. Z., “Differentsialno invariantnye podmodeli trekhmernykh podalgebr dlya szhimaemoi zhidkosti”, Sibirskii zhurnal industrialnoi matematiki, 10:2(30) (2007), 128–137 | MR | Zbl