Motion of three point vortices under the condition that one of them passes through the vorticity center
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 37-51
Cet article a éte moissonné depuis la source Math-Net.Ru
We use numerical analysis and theory of perturbation to investigate the motion of three point vortices under the condition that one of them passes through the vorticity center.
Keywords:
point vortices, perturbation theory, asymptotic behavior.
@article{VUU_2009_2_a4,
author = {A. I. Gudimenko and K. G. Kuptsov},
title = {Motion of three point vortices under the condition that one of them passes through the vorticity center},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {37--51},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/}
}
TY - JOUR AU - A. I. Gudimenko AU - K. G. Kuptsov TI - Motion of three point vortices under the condition that one of them passes through the vorticity center JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2009 SP - 37 EP - 51 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/ LA - ru ID - VUU_2009_2_a4 ER -
%0 Journal Article %A A. I. Gudimenko %A K. G. Kuptsov %T Motion of three point vortices under the condition that one of them passes through the vorticity center %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2009 %P 37-51 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/ %G ru %F VUU_2009_2_a4
A. I. Gudimenko; K. G. Kuptsov. Motion of three point vortices under the condition that one of them passes through the vorticity center. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 37-51. http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/
[1] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M., Izhevsk, 2005, 386 pp. | MR
[2] Meleshko V. V., Konstantinov M. Yu., Dinamika vikhrevykh struktur, Nauk. dumka, Kiev, 1993, 280 pp. | Zbl
[3] Borisov A.V., Mamaev I. S., Kilin A. A., “Absolute and relative choreographies in the problem of point vortices moving on a plain”, Reg. Chaot. Dyn., 9:2 (2004), 101–112 | DOI | MR
[4] Nayfeh A. H., Perturbation methods, A Wiley-Interscience Publication. John Wiley Sons, New York, 1973, 425 pp. | MR | Zbl