Motion of three point vortices under the condition that one of them passes through the vorticity center
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 37-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use numerical analysis and theory of perturbation to investigate the motion of three point vortices under the condition that one of them passes through the vorticity center.
Keywords: point vortices, perturbation theory, asymptotic behavior.
@article{VUU_2009_2_a4,
     author = {A. I. Gudimenko and K. G. Kuptsov},
     title = {Motion of three point vortices under the condition that one of them passes through the vorticity center},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {37--51},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/}
}
TY  - JOUR
AU  - A. I. Gudimenko
AU  - K. G. Kuptsov
TI  - Motion of three point vortices under the condition that one of them passes through the vorticity center
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 37
EP  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/
LA  - ru
ID  - VUU_2009_2_a4
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%A K. G. Kuptsov
%T Motion of three point vortices under the condition that one of them passes through the vorticity center
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 37-51
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/
%G ru
%F VUU_2009_2_a4
A. I. Gudimenko; K. G. Kuptsov. Motion of three point vortices under the condition that one of them passes through the vorticity center. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 2 (2009), pp. 37-51. http://geodesic.mathdoc.fr/item/VUU_2009_2_a4/

[1] Borisov A. V., Mamaev I. S., Matematicheskie metody dinamiki vikhrevykh struktur, Institut kompyuternykh issledovanii, M., Izhevsk, 2005, 386 pp. | MR

[2] Meleshko V. V., Konstantinov M. Yu., Dinamika vikhrevykh struktur, Nauk. dumka, Kiev, 1993, 280 pp. | Zbl

[3] Borisov A.V., Mamaev I. S., Kilin A. A., “Absolute and relative choreographies in the problem of point vortices moving on a plain”, Reg. Chaot. Dyn., 9:2 (2004), 101–112 | DOI | MR

[4] Nayfeh A. H., Perturbation methods, A Wiley-Interscience Publication. John Wiley Sons, New York, 1973, 425 pp. | MR | Zbl