Mots-clés : phase-plane portrait, mechanism of chaotisation, bifurcations.
@article{VUU_2009_1_a6,
author = {A. A. Kilin},
title = {Methods of high-accuracy integration and effectivity of calculus},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {153--161},
year = {2009},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2009_1_a6/}
}
A. A. Kilin. Methods of high-accuracy integration and effectivity of calculus. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 153-161. http://geodesic.mathdoc.fr/item/VUU_2009_1_a6/
[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Absolyutnye i otnositelnye khoreografii v dinamike tverdogo tela”, Nelineinaya Dinamika, 1:1 (2005), 123–141
[2] Borisov A. V., Simakov N. N., “Bifurkatsii udvoeniya perioda v dinamike tverdogo tela”, Regulyarnaya i khaoticheskaya dinamika, 2:1 (1997), 64–75 | MR
[3] Burov A. A., “Ob ogranichennoi postanovke zadachi o dvizhenii tyazhelogo tverdogo tela”, PMM, 68:6 (2004), 958–963 | MR | Zbl
[4] Dovbysh S. A., “Chislennoe issledovanie dvukh zadach mekhaniki: transversalnoe peresechenie separatris kolmogorovskaya ustoichivost”, V kn. Chislennyi analiz, matematicheskoe modelirovanie i ikh primenenie v mekhanike, Izd-vo Mosk. un-ta, M., 1988
[5] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi dinamike, Izd-vo UdGU, Izhevsk, 1995, 432 pp. | Zbl
[6] Kozlov V. V., Treschev D. V., “Neintegriruemost obschei zadachi o vraschenii dinamicheski simmetrichnogo tyazhelogo tverdogo tela s nepodvizhnoi tochkoi, II”, Vestnik Mosk. un-ta. Ser. mat., mekh., 1986, no. 1, 39–44 | MR | Zbl
[7] Neishtadt A. I., “Ob izmenenii adiabaticheskogo invarianta pri perekhode cherez separatrisu”, Fizika plazmy, 12:8 (1986), 992
[8] Treschev D. V., Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, FAZIS, M., 1998, 184 pp. | MR
[9] Borisov A. V., Dudoladov S. L., “Kovalevskaya Exponents and Poisson Structures”, Reg. Chaot. Dyn., 4:3 (1999), 13–20 | DOI | MR | Zbl
[10] Feigenbaum M. J., Greene J. M., MacKay R. S., Vivaldi V., “Universal behaviour in families of area-preserving maps”, Physica 3D, 1981, 468–486 | MR | Zbl
[11] MacKay R. S., Renormalisation in area-preserving maps, World Scientific, 1993, 324 pp. | MR
[12] Parker T. S., Chua L. O., Practical numerical algorithms for chaotic systems, Springer-Verlag, New York, 1989 | MR | Zbl
[13] Rimmer R., “Generic bifurcations from fixed points of involutory area preserving maps”, Diff. Equations, 29 (1978), 329 ; P. Math. Res. Paper 79-9, La Trobe U., Melbourne, 1979 | DOI | MR | Zbl
[14] Simo C., “Invariant curves of perturbations of non twist integrable area preserving maps”, Reg. Chaot. Dyn., 3 (1998), 180–195 | DOI | MR | Zbl
[15] Simo C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem”, Physica D, 140:1–2 (2000), 1–32 ; Симо К., Смейл С., Шенсине А., Современные проблемы хаоса и нелинейности, ИКИ, Ижевск, 2002, 304 с. (пер. с англ.) | DOI | MR | Zbl
[16] Wiggins S., Chaotic transport in dynamical systems, Springer, NY, 1992 | MR | Zbl