Methods of high-accuracy integration and effectivity of calculus
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 153-161
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and 2) development of cascades of period doubling bifurcations. On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.
Keywords: motion of a rigid body
Mots-clés : phase-plane portrait, mechanism of chaotisation, bifurcations.
@article{VUU_2009_1_a6,
     author = {A. A. Kilin},
     title = {Methods of high-accuracy integration and effectivity of calculus},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {153--161},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_1_a6/}
}
TY  - JOUR
AU  - A. A. Kilin
TI  - Methods of high-accuracy integration and effectivity of calculus
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 153
EP  - 161
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_1_a6/
LA  - ru
ID  - VUU_2009_1_a6
ER  - 
%0 Journal Article
%A A. A. Kilin
%T Methods of high-accuracy integration and effectivity of calculus
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 153-161
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2009_1_a6/
%G ru
%F VUU_2009_1_a6
A. A. Kilin. Methods of high-accuracy integration and effectivity of calculus. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 153-161. http://geodesic.mathdoc.fr/item/VUU_2009_1_a6/

[1] Borisov A. V., Kilin A. A., Mamaev I. S., “Absolyutnye i otnositelnye khoreografii v dinamike tverdogo tela”, Nelineinaya Dinamika, 1:1 (2005), 123–141

[2] Borisov A. V., Simakov N. N., “Bifurkatsii udvoeniya perioda v dinamike tverdogo tela”, Regulyarnaya i khaoticheskaya dinamika, 2:1 (1997), 64–75 | MR

[3] Burov A. A., “Ob ogranichennoi postanovke zadachi o dvizhenii tyazhelogo tverdogo tela”, PMM, 68:6 (2004), 958–963 | MR | Zbl

[4] Dovbysh S. A., “Chislennoe issledovanie dvukh zadach mekhaniki: transversalnoe peresechenie separatris kolmogorovskaya ustoichivost”, V kn. Chislennyi analiz, matematicheskoe modelirovanie i ikh primenenie v mekhanike, Izd-vo Mosk. un-ta, M., 1988

[5] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi dinamike, Izd-vo UdGU, Izhevsk, 1995, 432 pp. | Zbl

[6] Kozlov V. V., Treschev D. V., “Neintegriruemost obschei zadachi o vraschenii dinamicheski simmetrichnogo tyazhelogo tverdogo tela s nepodvizhnoi tochkoi, II”, Vestnik Mosk. un-ta. Ser. mat., mekh., 1986, no. 1, 39–44 | MR | Zbl

[7] Neishtadt A. I., “Ob izmenenii adiabaticheskogo invarianta pri perekhode cherez separatrisu”, Fizika plazmy, 12:8 (1986), 992

[8] Treschev D. V., Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, FAZIS, M., 1998, 184 pp. | MR

[9] Borisov A. V., Dudoladov S. L., “Kovalevskaya Exponents and Poisson Structures”, Reg. Chaot. Dyn., 4:3 (1999), 13–20 | DOI | MR | Zbl

[10] Feigenbaum M. J., Greene J. M., MacKay R. S., Vivaldi V., “Universal behaviour in families of area-preserving maps”, Physica 3D, 1981, 468–486 | MR | Zbl

[11] MacKay R. S., Renormalisation in area-preserving maps, World Scientific, 1993, 324 pp. | MR

[12] Parker T. S., Chua L. O., Practical numerical algorithms for chaotic systems, Springer-Verlag, New York, 1989 | MR | Zbl

[13] Rimmer R., “Generic bifurcations from fixed points of involutory area preserving maps”, Diff. Equations, 29 (1978), 329 ; P. Math. Res. Paper 79-9, La Trobe U., Melbourne, 1979 | DOI | MR | Zbl

[14] Simo C., “Invariant curves of perturbations of non twist integrable area preserving maps”, Reg. Chaot. Dyn., 3 (1998), 180–195 | DOI | MR | Zbl

[15] Simo C., Stuchi T. J., “Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem”, Physica D, 140:1–2 (2000), 1–32 ; Симо К., Смейл С., Шенсине А., Современные проблемы хаоса и нелинейности, ИКИ, Ижевск, 2002, 304 с. (пер. с англ.) | DOI | MR | Zbl

[16] Wiggins S., Chaotic transport in dynamical systems, Springer, NY, 1992 | MR | Zbl