Two-dimensional $\mathrm T$-systems of functions and their application for research of time optimal linear nonstationary control systems
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 101-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of $\rm TA$-system is introduced for a two-dimensional family of functions. This concept generalizes the well-known notion of $\rm T$-system for a one-dimensional family of functions. A number of statements about $\rm TA$-systems of functions is formulated and proved. The developed theory of $\rm TA$-systems is used to studying of linear non-stationary control systems. For such systems the time optimal problem is solved provided the initial point belongs the interior of the subcritical set.
Keywords: Tchebyshev systems of functions, $\mathrm T$-systems, linear nonstationary control systems, time optimal control problem, time optimal function, subcritical systems, positional control.
@article{VUU_2009_1_a4,
     author = {V. V. Lukyanov},
     title = {Two-dimensional $\mathrm T$-systems of functions and their application for research of time optimal linear nonstationary control systems},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {101--130},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2009_1_a4/}
}
TY  - JOUR
AU  - V. V. Lukyanov
TI  - Two-dimensional $\mathrm T$-systems of functions and their application for research of time optimal linear nonstationary control systems
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2009
SP  - 101
EP  - 130
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2009_1_a4/
LA  - ru
ID  - VUU_2009_1_a4
ER  - 
%0 Journal Article
%A V. V. Lukyanov
%T Two-dimensional $\mathrm T$-systems of functions and their application for research of time optimal linear nonstationary control systems
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2009
%P 101-130
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2009_1_a4/
%G ru
%F VUU_2009_1_a4
V. V. Lukyanov. Two-dimensional $\mathrm T$-systems of functions and their application for research of time optimal linear nonstationary control systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, no. 1 (2009), pp. 101-130. http://geodesic.mathdoc.fr/item/VUU_2009_1_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp. | MR | Zbl

[2] Chernousko F., Shmatkov A. M., “Optimalnoe po bystrodeistviyu upravlenie v odnoi sisteme tretego poryadka”, Prikladnaya matematika i mekhanika, 61:5 (1997), 723–731 | MR | Zbl

[3] Kiselev Yu. N., “Optimalnyi sintez v gladkoi lineinoi zadache bystrodeistviya”, Differentsialnye uravneniya, 26:2 (1990), 232–237 | MR | Zbl

[4] Belousova E. R., Zarkh M. A., “Postroenie poverkhnosti pereklyucheniya v lineinoi zadache bystrodeistviya chetvertogo poryadka”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1994, no. 6, 126–139 | Zbl

[5] Belousova E. R., Zarkh M. A., “Sintez optimalnogo upravleniya v lineinoi zadache bystrodeistviya chetvertogo poryadka”, Prikladnaya matematika i mekhanika, 60:2 (1996), 189–197 | MR | Zbl

[6] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie: Lineinaya teoriya, Vysshaya shkola, M., 2001, 239 pp.

[7] Gabasov R., Kirillova F. M., Prischepova S. V., “Sintez optimalnoi po bystrodeistviyu diskretnoi sistemy”, Avtomatika i telemekhanika, 1991, no. 12, 92–99 | MR | Zbl

[8] Gabasov R., Kirillova F. M., Kostyukova O. I., “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1992, no. 4, 3–19 | MR | Zbl

[9] Tonkov E. L., K teorii lineinykh upravlyaemykh sistem, Dis. d-ra. fiz.-matem. nauk, IMM UNTs AN SSSR, Sverdlovsk, 1983, 267 pp.

[10] Albrekht E. G., Ermolenko E. A., “Sintez optimalnogo po bystrodeistviyu upravleniya v lineinykh sistemakh”, Differentsialnye uravneniya, 33:11 (1977), 1443–1450 | MR

[11] Tonkov E. L., “Neostsillyatsiya i chislo pereklyuchenii v lineinoi sisteme, optimalnoi po bystrodeistviyu”, Differentsialnye uravneniya, 9:12 (1973), 2180–2185 | MR | Zbl

[12] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 552 pp. | MR

[13] Nikolaev S. F., Tonkov E. L., “Struktura mnozhestva upravlyaemosti lineinoi dokriticheskoi sistemy”, Differents. uravneniya, 35:1 (1999), 107–115 | MR | Zbl

[14] Nikolaev S. F., Tonkov E. L., “Differentsiruemost vektora bystrodeistviya i pozitsionnoe upravlenie lineinoi dokriticheskoi sistemoi”, Differents. uravneniya, 36:1 (2000), 78–84 | MR

[15] Nikolaev S. F., Tonkov E. L., “Differentsiruemost funktsii bystrodeistviya i pozitsionnoe upravlenie lineinoi nestatsionarnoi sistemoi”, Izv. In-ta matematiki i informatiki / UdGU. — Izhevsk, 1996, no. 2(8), 47–68

[16] Nikolaev S. F., Tonkov E. L., “Pozitsionnoe upravlenie nelineinoi sistemoi blizkoi k dokriticheskoi”, Izv. In-ta matematiki i informatiki / UdGU. — Izhevsk, 1998, no. 2(13), 3–26

[17] Milich N. V., “O strukture granitsy mnozhestva upravlyaemosti lineinoi dokriticheskoi sistemy na bolshom promezhutke vremeni”, Izv. In-ta matematiki i informatiki / UdGU. — Izhevsk, 1998, no. 2(13), 27–52

[18] Milich N. V., “Dlina promezhutka chebyshevskosti i mnozhestvo upravlyaemosti lineinoi nestatsionarnoi sistemy”, Vestnik Udmurtskogo universiteta. Matematika. / UdGU. — Izhevsk, 2000, no. 1, 109–130

[19] Milich N. V., “Pozitsionnoe upravlenie vozmuschennoi sistemoi, blizkoi k dokriticheskoi”, Izvestiya Instituta matematiki i informatiki / UdGU. — Izhevsk, 2000, no. 2(19), 38–53

[20] Rodionova A. G., Tonkov E. L., “O nepreryvnosti funktsii bystrodeistviya lineinoi sistemy v kriticheskom sluchae”, Izv. vysshikh uchebnykh zavedenii. Matem., 1993, no. 5(372), 101–111 | MR | Zbl